

2257-35

Joint ICTP-IAEA School of Nuclear Energy Management

8 - 26 August 2011

IAEA Project on Common Technology and Issues for Small and Medium-sized Reactors

> Mohammad Hadid Subki IAEA, Vienna Austria

Joint ICTP-IAEA School of Nuclear Energy Management, Trieste, Italy, 11 August 2011

IAEA Project on Common Technology and Issues for Small and Medium-sized Reactors

M. Hadid Subki Technical Lead, SMR Technology Nuclear Power Technology Development Section Nuclear Division of Nuclear Power Department of Nuclear Energy

Outline

- Global Status of SMR Deployment and Development
- Status of SMR designs
- Perceived Advantages and Challenges
- Generic Technical Issues
- Developing Countries' Expectations
- Lessons-Learned from the Fukushima Event
- <u>Conclusions</u>

Definitions

- IAEA:
 - Small-sized reactors: < 300 MW(e)
 - Medium-sized reactors: $300 \rightarrow 700 \text{ MW}(e)$
 - Regardless of being modular or non-modular
 - Covers all reactors in-operation and under-development with power < 700 MWe
 - Covers 1970s technology → 2000s innovative technology
- Several developed countries:
 - Small-sized reactors: < 300 MW(e)
 - Emphasize the benefits of being small and modular
 - Focus on innovative reactor designs under-development

Global Development and Deployment

- Dozens of concepts for innovative SMRs are under development in many IAEA Member States:
 - Argentina, Brazil, Canada, China, France, India, Japan, Republic of Korea, Russia, South Africa, USA, and some emerging countries.
- A number of companies are developing SMRs; each has unique features and varying megawatt capacity.
- Many SMRs (with 1970s, 1980s technologies) have long been in operation and many are under construction

In Operation	125
Under construction	17
Number of countries with SMRs	28
Generating Capacity, GW(e)	57.1

• None of the innovative SMRs are commercially available

SMRs for Immediate Deployment

	Name	Design Organization	Country of Origin	Electrical Capacity, Mwe	Design Status
1	Pressurized Heavy Water Reactor (PHWR-220)	NPCIL	India	220	16 units in operation
2	PHWR-540	NPCIL	India	540	2 units in operation
3	PHWR-700	NPCIL	India	700	4 units under construction
4	KLT-40S	OKBM	Russian Federation	70	2 units under construction
5	HTR-PM	Tsinghua University	China, Republic of	250	Detailed design, 2 modules under construction
6	Central Argentina de Elementos Modulares (CAREM)	INCAP-CNEA	Argentina	27	Detailed design, prototype construction in 2012
7	Prototype Fast Breed Reactor (PFBR-500)	IGCAR	India	500	Under construction – Commissioning in 2012
8	CANDU 6	Atomic Energy of Canada Limited	Canada	700	Many in operation
9	CPR-300	CGNPP	China, Republic of	300	1 unit in Operation as Chasnupp-2 in Pakistan

SMRs for Near-term Deployment

	Name	Design Organization	Country of Origin	Electrical Capacity, MWe	Design Status
1	System Integrated Modular Advanced Reactor (SMART)	Korea Atomic Energy Research Institute	Republic of Korea	100	Detailed design
2	NuScale	NuScale Power	United States of America	45/module	Detailed design, to apply for certification in January 2012
3	mPower	Babcock & Wilcox	United States of America	125/module	Detailed design, to apply for certification later in 2012
4	VBER-300	OKBM	Russian Federation	300	Detailed design
5	SVBR-100	Rosatom	Russian Federation	100	Detailed design for prototype construction
6	Westinghouse SMR	Westinghouse	United States of America	200	Detailed Design
7	Super-Safe, Small and Simple (4S)	Toshiba-CRIEPI	Japan	10	Detailed design
8	Pebble Bed Modular Reactor (PBMR)	ESKOM	South Africa	100	Detailed design; Development discontinued

Example of SMRs for Long-term Deployment

	Name	Design Organization	Country of Origin	Electrical Capacity, MWe	Design Status
1	Power Reactor Innovative Small Modular (PRISM)	GE Hitachi	United States of America	311	Detailed Design
2	Advanced Heavy Water Reactor	BARC	India	220	Conceptual Design
3	Integrated Modular Water Reactor (IMR)	Mitsubishi Heavy Industries	Japan	350	Conceptual Design
4	Flexblue	AREVA, EDF, DCNS, CEA	France	50-250	Conceptual Design
5	VK-300	RIAR	Russian Federation	100/300	Conceptual Design
6	EM^2	General Atomics	USA	240	Conceptual Design

Perceived Advantages and Challenges

		Advantages	Challenges
	Technological legues	 Shorter construction period (modularization) Potential for enhanced reliability and/or safety Reduced complexity in design and human factor Suitability for non-electricity application (i.e. process heat and desalination) Tolerance to grid instabilities 	 Licensability (delays due to design innovation) Non-LWR technologies Impact of innovative design and fuel cycle to proliferation resistance Operability Spent fuel management and waste handling policies
Issues	Non-Technological	 Fitness for smaller electricity grids Options to match demand growth by incremental capacity increase Site Flexibility Lower upfront investment capital cost per installed unit Easier financing scheme 	 Economic competitiveness (impact of economy of scale) Reduced emergency planning zone Regulation for fuel or NPP leasing Limited market opportunities First of a kind cost estimate Availability of design for newcomers Infrastructure requirements 10

Answers Needed Prior to Deployment

- What are the pathways to licensing?
- How soon will a commercial product be available?
- How to prove economic competitiveness?
 - What are projected benefits against large plants? (multi-modules SMR vs single large unit)
 - What are projected benefits against fossil power plants with the same power output?
 - What will be the realistic \$/kWe delivered?
- Are the grid requirements in developing countries understood and can the technology being offered meet them?
- What operational issues are expected and how will they be addressed?

Generic Technical Issues

- First of a kind engineering
- Innovative fuel/core design and fuel cycle
- Viability of multiple-modules station (post-Fukushima)
- Proliferation resistance and physical security
- Ergonomics and control room staffing
- Emergency planning zone
- Mechanistic source term
- Standardization and licenses for manufacturing
- Technology transfer and proprietary design protection
- Users and Owners issues

IAEA Response to the Global Trend

- Project 1.1.5.5: Common Technologies and Issues for SMRs (P&B 2010 – 2011 and 2012 – 2013)
- Objective: To facilitate the development of key enabling technologies and the resolution of enabling infrastructure issues common to future SMRs
- Activities:
 - Formulate roadmap for technology development
 - Review newcomer countries requirements, regulatory infrastructure and business issues
 - Define operability-performance, maintainability and constructability indicators
 - Develop guidance to facilitate countries with planning for SMRs technology implementation

IAEA's Project 1.1.5.5 (2010 - 2011)

- Consultancy Meeting on "Status of Innovative SMR Designs with a Potential of Being Deployed by 2020"
 - Date/place: **2 4 May** 2011 in IAEA Vienna (DONE)
- Research Coordination Meeting for the CRP on "Development of Advanced Methodologies for the Assessment of Passive Safety System Performance in Advanced Reactors (I31018)"
 - Date/place: 26 28 April 2011 in IAEA Vienna (DONE)
- TC Workshop on Advanced Nuclear Reactor Technology for Near Term Deployment
 - Date/place: 4-8 July 2011 in IAEA Vienna (DONE)
- 3rd Technical Meeting on "Options to Incorporate Intrinsic Proliferation Resistance Features to NPPs with Innovative SMRs"
 - Date/place: **15 18 August** 2011 in IAEA Vienna (...next week !!!)
- CM on "Options to Enhance Energy Supply Security with NPPs based on SMRs"
 - Date/place: 3 -6 October 2011 in IAEA Vienna
- Workshop on "Technology Assessment of SMR deployable by 2020"
 - Date/place: 5 9 December 2011 in IAEA Vienna
 - Extra-budgetary from Republic of Korea

Conclusions

- SMR is an attractive nuclear power option for developing countries with small electricity grids and lessdeveloped infrastructure
- Potential for near-term deployment but much work yet to be done by stake holders
- Innovative SMR concepts have common technology development challenges: licensability, competitiveness, financing schemes, newcomer countries requirements
- **Economics:** \$ per kWe to construct? \$ per kWe-hr to operate?
- Needs to implement lessons-learned from the Fukushima Accident into the design, safety, economic, financial, licensing, and public acceptance for SMRs

For inquiries, please contact: Dr. M. Hadid Subki <<u>M.Subki@iaea.org</u>>