

2257-38

Joint ICTP-IAEA School of Nuclear Energy Management

8 - 26 August 2011

Commissioning, Operation and Life Management of NPPs

Vincent Nkong Njock IAEA, Vienna Austria

NUCLEAR POWER INFRASTRUCTURES, CONSTRUCTION & COMMISIONNING

August 2011

Nuclear Power Division Ki-Sig Kang / V. Nkong-Njock

International Atomic Energy Agency

3 challenges for the world energy sector

Challenges & Opportunities : Before

- Growing energy
 need
- Climate change
- Energy security
- Fossil fuel price rise And Nuclear Power
- Improved operations, good economics and safety record

Nuclear power early 2011

On 10 March 2011, 442 nuclear power plants (NPPs) operated in 29 countries worldwide, with a total installed capacity of 375 000 MWe.

Development of regional nuclear generating capacities

PROSPECTS

Description	Number in 2008	Number in 2010
Not planning to introduce nuclear power plants, but interested in considering the issues associated with a nuclear power programme	16	31
Considering a nuclear programme to meet identified energy needs with a strong indication of intention to proceed	14	14
Active preparation for a possible nuclear power programme with no final decision	7	7
Decided to introduce nuclear power and started preparing the appropriate infrastructure	4	10
Invitation to bid to supply a nuclear power plant prepared	1	
New nuclear power plant ordered		2
New nuclear power plant under construction	1	1
Total	51	65

From "International Status and Prospects" 2008 and 2010

Challenges & Opportunities : Today

- Growing energy need
- Environmental Protection
 & Climate Change
- Energy security
- Fossil Fuel Price
 Volatility
- Need for low-cost base load electricity
- In spite of
- Fukushima accident

AEA

Nuclear Power after Fukushima

(as of August 2011)

IAEA PROPOSAL (Ministerial Conference on NS, Vienna, June 2011)

- Need to strengthen the IAEA Safety Standards
- Need to systematically and regularly review the safety of all NPPs
- Concern about national regulatory bodies which play a crucial role in ensuring safety. All countries should ensure that their regulatory bodies are as effective as possible.
- Need to strengthen the global emergency preparedness and response systems
- Need to enhance IAEA's role in receiving and disseminating information.

Nuclear Power after Fukushima

(as of July 2011)

- Driving forces underlying the renaissance in interest prevail ?
- Countries with existing NPPs reassess their Safety Features (stress tests, etc.)
- Assessment of expansion/introduction of NP
- New safety regimes expected from lessons learned
- Project delays and fewer plants built in the short-term
- Economics of potential retrofits & new NPPs uncertain
- Potential shift to SMRs

Nuclear power after Fukushima (as of July 2011)

- Continued use of existing NPPs contested in Germany
- Continued use of NP in principle not contested in other countries
- New build contested in Japan, Italy and Switzerland
- A lot will depend on the
 - Transparency and effectiveness of dealing with the aftermath in Fukushima
 - Short- and long terms impacts on the local population
 - Full appreciation of causality
 - Availability and economics of alternatives
- More Importance of National Position & Stakeholder

 Involvment
 IAEA

MILLESTONE "STEPWISE" APPROACH

ISSUES	MILESTONE 1		MILESTONE 2		MILESTONE 3			
National position								
Nuclear safety								
Management								
Funding and financing								
Legislative framework		S			S		SN	
Safeguards		IOL			IOI		DITION	
Regulatory framework		DIT			DIT			
Radiation protection		NO			NO		NO	
Electrical grid		\bigcirc			\bigcirc		\mathbf{O}	
Human resources development								
Stakeholder involvement								
Site and supporting facilities								
Environmental protection								
Emergency planning								
Security and physical protection								
Nuclear fuel cycle								
Radioactive waste								
Industrial involvement								
Procurement								

What makes nuclear power unique?

- Scale
 - Cost / Investment Cost
 - Development / Construction Period
- Safety
- Public Perception / Public Relations

- Regulatory Environment
- Fuel Cycle
- Site Security
- International Features
 Treaty Regimes / Legal Framework
 - Cross-Border
 - Non-Proliferation
- Interdependence of the Nuclear Industry
 - ✓ Impact of Success/Failure
 - ✓ Being Part of the "Nuclear Club"
 - Commitment to Excellence

NPP LIFE CYCLE CASH FLOW

CONSTRUCTION / COMMISSIONNING & OPERATION

Construction Completion Schedule

TYPICAL MANPOWER LOADING CURVE FOR NUCLEAR POWER PROJECT

CONSTRUCTION

NP PROJECT SCHEDULE : CONSTRUCTION

CONSTRUCTION SCHEDULE GEN III+

Strategies for Shortening Const. period

CONSTRUCTION METHODS

- Open Top Installation
- Modularization
- Advanced Welding Techniques
- Steel Plate Reinforced Concrete Structures
- All Weather Construction & Round the Clock Work

- Concrete Composition Technologies
- Excavation Techniques
- Cable Installation
- Area Completion Schedule
 Management
- Application of Computer Systems for Information Management and Control

Open Top Installation & Very Heavy Lift Crane

Open Top Installation & Very Heavy Lift Crane

Advantages

- Full exploitation of open-top construction is expected to reduce total construction time
- Reduce job-hours at jobsite

Disadvantages

- The cost of heavy lift equipment and the facilities necessary for the prefabrication of modular components.
- VHL could be one of long-lead items which may take between 1 and 2 years including design and manufacturing;
- VHL crane requires larger footprint close to the major buildings -Planning for crane placement and movement is a crucial step in opentop installation
- Requires proper protection of Bulk
 Commodities

On-site Work Reduction - Modularization Method -

At Tarapur (India), construction of a gas insulated switch gear was completed with 50% saving in time as compared to conventional way of construction.

Modularization

- Prefabrication and pre-assembly of modules prior to installation
- Advantages:
 - Reduce site congestion
 - Allows work in parallel
 - Capability for mass production of modules for several units, with the associated benefit of reducing production time and labor requirements
 - Provision of a controlled environment for module production: easy availability of materials & components
 - Manufacturing of modules before the site becomes available

- Careful consideration of the following:
 - Necessary to complete the design of the plant before module fabrication
 - Increased Engineering for Modules
 - Construction of factories for module fabrication
 - Necessity of earlier outlay of funds for engineering, materials and components before module fabrication
 - Increase Temporary Support Structure / Lifting and Rigging Requirements - expensive custom-made heavy lift cranes
 - Transportation costs
 - Infrastructure and skills requirements

Advanced Welding Techniques

Quality welding is crucial and time consuming

- Advanced Techniques
 - Metal Arc Welding,
 - Gas Tungsten Arc Welding
 - Submerged Arc Welding
- Automatic welding equipment is very effective
 - Maintaining high quality
 - Improving the working environment in narrow spaces.

Automatic Welding Machine

Automatic Welding Machine for RCCV Liner

Automatic Welding for Small Bore Piping (CRD piping)

Automatic Welding for Large Bore Piping

Concrete Composition Technologies Advanced concretes developed to improve strength, workability, and corrosion resistance. Examples

- Self-compacting concrete
- High performance concrete
- Reactive powder concrete.

Steel Plate Reinforced Concrete Structures

- Conventionally reinforced concrete is fabricated in place using reinforcing bars with external forms to frame the structure
 - This conventional technique requires considerable time
- For floors/walls of various buildings, including pipe runs, penetrations, etc
 - Reduced amount of reinforced bars and construction man-hours
 - Potential for huge composite modules with mechanical/electrical commodities

Steel Plate Reinforced Concrete Structures

- Significant reduction of on-site works

- SC wall construction is twice as fast as RC wall wall O RC(Reinforced Concrete) Structure

- → **SC**(Steel Plate Concrete) Structure Module
- O Minimum 3 months shortened

As seen in the Qinshan Project (China), for the containment building, the wall was completed in less than 1 month compared to the 10 months in the case of a non-slip formed wall.

Four Season Construction

All-Weather Construction Method

Four Season Construction

All-Weather Construction Method

Inside of All-weather structure (Reactor Building)

Installation of Condenser module using Overhead crane equipped in All-weather Turbine Building

Construction Planning with 3D model

Module

Pipe Spool

Temporary

Open-top

Construction Schedule with 6D

3D-model linked with Schedule

COMMISSIONING

Key Events for Commissioning Test

- Initial Energization
- Utilities Production
- CHT(Cold Hydro Test)
- SHT(Secondary Hydro Test)
- SIT(Structure Integrity Test)
- ILRT(Integrated Leak Rate Test)
- HFT(Hot Functional Test)
- Fuel Loading
- PAT(Power Ascension Test)
- Plant Performance Test

CAPACITY BUILDING OWNER / OPERATOR

	Lead responsibility					
Activity	Turnkey	Split package	Multiple package			
Pre-project activities	U	U	U			
Project management	MC	AE or U	U + AE			
Project engineering	MC	AE + SS	U or AE			
Quality assurance	MC + U	AE + SS + U	U + AE			
Procurement	MC	AE + SS	U or AE			
Application for license	U	U	U			
Licensing	RA	RA	RA			
Safeguards, physical protection	U	U	U			
Manufacturing	MC	SS + EM	EM			
Site preparation	U or MC	U or AE	U or AE			
Erection	MC	AE + SS	U or AE			
Equipment installation	MC	AE + SS	U or AE			
Commissioning	MC	AE + U	U or AE			
Plant operation and maintenance	U	U	U			
Fuel procurement	U	U	U			
Fuel fabrication	FS	FS	FS			
Waste management	U	U	U			

AE=Architect-engineer FS=Fuel supplier MC=Main contractor

EM=Equipment manufacturer RA=Regulatory authority SS=System supplier U=Utility

Each Phase of An NPP's Life Cycle Is Unique, and Requires A Different Staffing Model

- The NPP Life Cycle can be divided into eight phases:
 - 1. Plant Design Selection
 - 2. Site Selection
 - 3. Plant Licensing
 - 4. Construction
 - 5. Start Up/Testing
 - 6. Commercial Operations
 - 7. Shut Down/Safe Store
 - 8. Decommissioning
- Each life cycle phase should be examined at the level of job functions required during that time window

STAFING REQUIREMENT

- National/local regulatory staffing environment
 - Oversight regulations
 - Reporting requirements
 - Licensing approach and frequency
- Site size and design/layout of facilities
 - Total site footprint
 - Location and relationship of buildings and infrastructure systems
- Plant design
 - NSSS type
 - Safety systems
 - Design capacity
- Plant equipment layout

Equipment accessibility Size and locations of laydown space

Many Staffing Functions Have Multiple Drivers That Must All Be taken Into Consideration For New Nuclear Plants

- Each staffing function may have more than one site, plant, or organizational driver
- This table summarizes the complexities of staffing requirements when five major drivers are considered
 - Plant Design
 - Site Layout
 - Regulatory Requirements
 - Outsourcing Options
 - Ability to Centralize
- Careful labor planning can save significant costs over the plant's lifecycle

e	Area	Function	Plant Design	Site Layout	Regulatory Requirement	Outsourcing	Centralization
	-						
	Operations	Applied Radiation Protection	Х		X	Х —	X
		ALARA/Radiological Engineering	Х		v		· ·
		Chemistry	Х		OPF	RATIO	
		Decontamination/Radwaste Processing	Х		UIL		
		Environmental		X			
-		Fire Protection	Х	х	^		
		Operations	Х	Х	Х		
		Operations Support	Х	Х			
		Radiation Protection Support			Х	Х	Х
	Engineering	Computer Engineering	Х	Х	Х		Х
		Design/Drafting	Х	X	X	x	x
		Modifications Engineering	Х	X	ENCT	NICEDI	
		Nuclear Fuels	Х	Х	ENGL	NEEK	
		Plant Engineering	Х	X			
		Procurement Engineering				~	~ ~
- 1		Project Management				Х	Х
- 1		Reactor Engineering	Х	Х	Х		
		Technical Engineering	Х	Х		Х	Х
- 1	Maintenance	Facilities Maintenance		Х		Х	Х
		Maintenance/Construction	Х	Х			
		Maintenance/Construction Support	Х	X		TENAI	NCE –
		Outage Management	Х	X			
		Quality Control/Non-Destructive Examination					
		Safety/Health	Х		Х		Х
		Scheduling	Х				
	Regulatory	Emergency Preparedness	Х	Х	Y		Y
	. <u>.</u> ,	Licensing	Х		DECI		
		Nuclear Safety Review			KEGU	JLAIU	VKY –
		Quality Assurance					
)		Security	Х	x		0	
S	Site Support	Budget/Accounting			Х		X
~		Communications					
		Contracts			SITE	SUPPO)R'I' —
		Document Control/Records					
		Human Resources					_
		Information Management				Х	x
		Management			X		~
		Management Support			~		
		Materials Management	X			X	¥
		Purchasing	~			X	×14
		Training		X	X	~	X
		Warehouse	Y	× ×	~	Y	× ×
		Walchouse	^	^		^	^

An Organizational Approach Will Also Be Required To Optimize Effectiveness of The Staff In Each Phase

- Once staffing requirements have been derived for each phase of the NPP's life cycle, an organizational structure/design will be required for each
- Four organizational principles should be applied:
 - 1. Balance layers of management and spans of control
 - 2. Align related and supporting functions
 - 3. Outsource functions that are:
 - Not required to be on-site/on-location, or
 - Not mission critical for operation, or to meet regulatory requirements
 - 4. Centralize functions with a parent company, where possible, due to the parent company or an alliance member having other power generation facilities

TO AVOID

NON SUCCESFULL NP PROGRAMMES

Preservation Of Stored Components

Angra 3 NPP in Brazil

Cernavoda NPP, Romania Right: Unit 1 /2 (in operation), Unit 3 (in preservation) Left: Unit 4 and 5 (in preservation)

Atucha II NPP – Argentine (1980)

Installation of Moderator Tank, June 2009

CONCLUSION

SUMMARY & CONCLUSION

- 61 plants under construction & FUKUSHIMA accident
 - give many different signals for the future
- Future will have many different options
- Each country will adopt different strategies
 - Energy independence would be a key driver
 - Localization will play a major role
 - Many suppliers aiming for big portions of market
 - Using small plants !

CONCLUSION

- Selection of these construction methods should be done in the conceptual stage
- Requires early investment in factories and shops
- Shortage of specialized skills and equipment may be a problem for some countries to implement the advanced methods
- Early Investment in the education of the contractors and fabricators must be prioritized
- There is no "one size fits all" what works for Country X may not work for Country Y

Commissioning Manpower Control

Commissioning organization

Structure of Commissioning Support **Construction Group Commissioning Group Operation Group** - Construction Contractor - Plant Operation - Test Procedures -Prepare System T/O packages - Operation License - Perform Comm.Tests •On time system T/O to Com. - Well-trained Operating Staff - Operating Procedure A/E & Designer **Maintenance Group Equip.** Supplier - Manpower Support - Design Requirements - Vendor - Maintenance - Startup Guideline - Instruction Manual - Preservation - Special Tools - Spare Parts