

2257-36

Joint ICTP-IAEA School of Nuclear Energy Management

8 - 26 August 2011

Innovative Nuclear Systems

Randall Beatty IAEA, Vienna Austria

Innovative Nuclear Systems ICTP August 2011

Presented by Randy Beatty, INPRO Group Leader Prepared by Stefano Monti Nuclear Power Technology Development Section Division of Nuclear Power

Nuclear innovation is hard

- Very conservative enterprise
- Cost of designing and certifying a new reactor concept is approximately \$1B
 - Standardization vs. innovation
- Advanced nuclear technology is not the only need
 - Communication tools
 - Regulatory tools for adapting to innovation
 - Construction techniques
 - Lessons from construction and operational experience
 - Experimental and analytical tools
- How can a Gen-IV or other advanced reactor economically compete against Gen-III or III+?

Trends in nuclear innovation

- Technology transfer from another field
 - Exascale computing
 - Nanomaterials
 - Instrumentation and control
 - Power generation
- "Frankenstein" approach—combining the best parts to produce something powerful, some refinement needed
 - VHTR+MSR-He-UF4=AHTR
 - VHTR+SFR-Na=GFR
- Technology focused on policy goals
 - Safety
 - Nonproliferation

Cost-effective modernization of existing plants

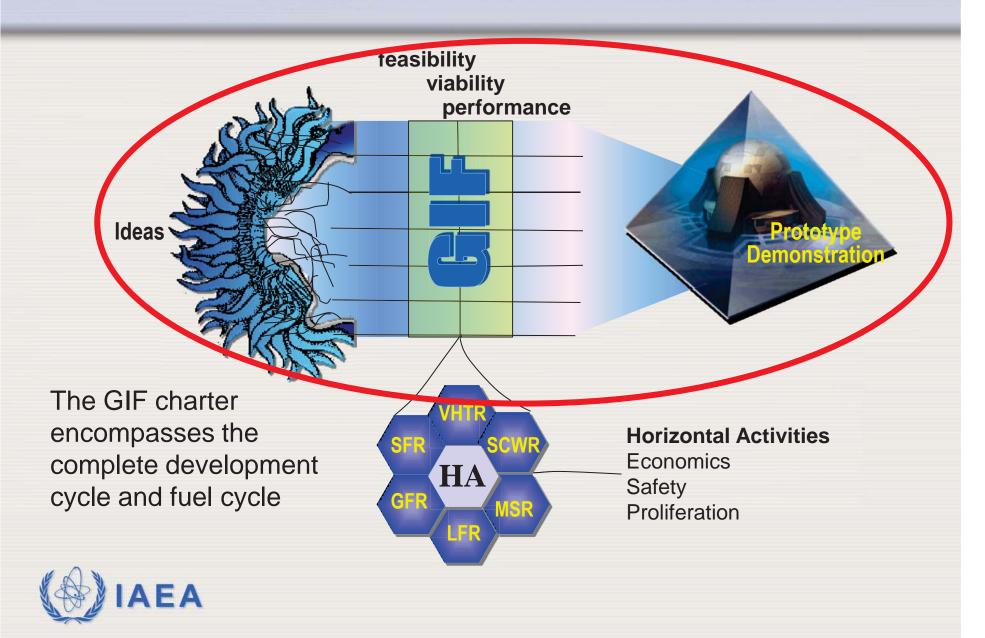
To paraphrase Admiral Rickover:

An academic reactor is simple, small, cheap, light, flexible of purpose, requires little development, and can be built quickly. A practical reactor is large, heavy, complicated, expensive, is being built now, is behind schedule, and is requiring an immense amount of engineering development on seemingly trivial items.

GIF (Generation IV International Forum) Strategy

Identify challenging goals

Create a multilateral framework for cooperation among leading nuclear development nations


Organize, grow, expand membership

<u>Goals</u>

Sustainability: resources and waste management Economics: Competitive cost and financial risk Safety: Reliable, low risk of core damage, no EPZ Proliferation: Not a weapons path; secure against terrorism

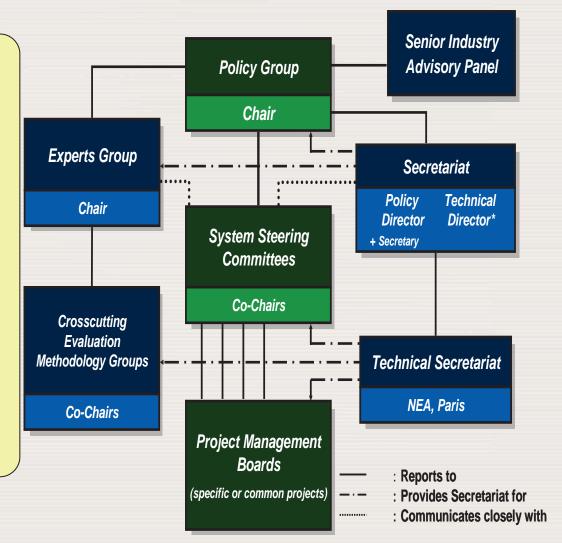
From concept to demonstration

GIF (Generation IV International Forum) GEN

Goals and organization:

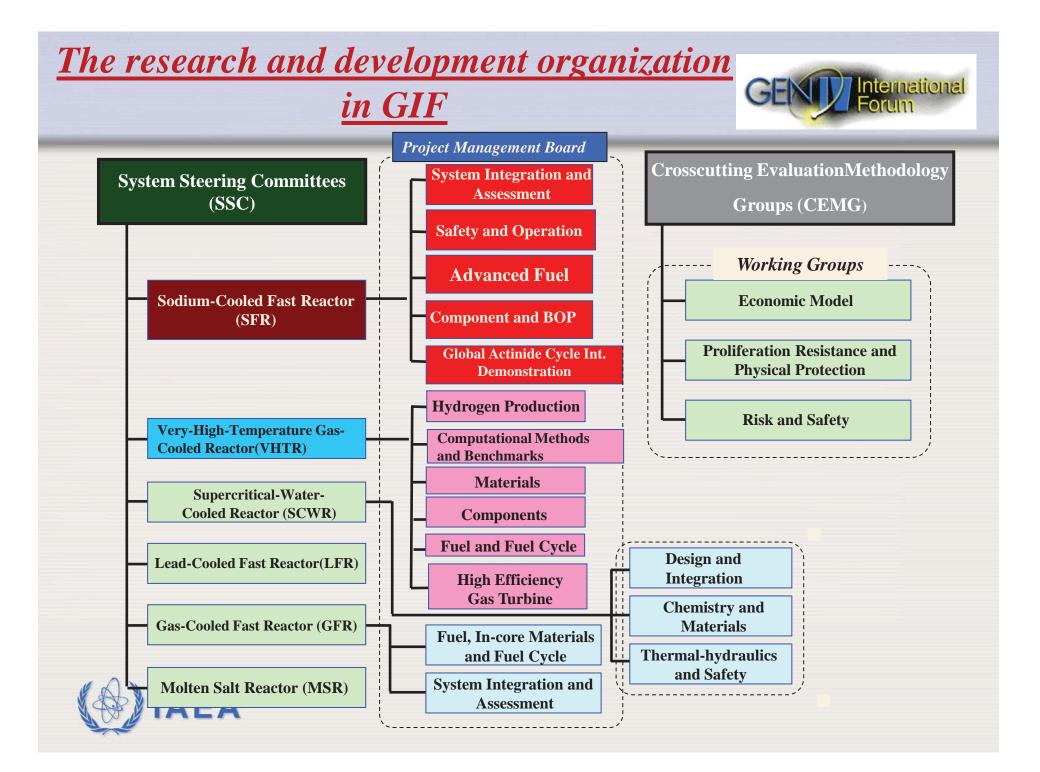
- •Sustainability
 - resources and waste management

Proliferation Resistance ands Physical Protection


• Not a weapons path; secure against terrorism

• Economics

• Competitive cost and financial risk

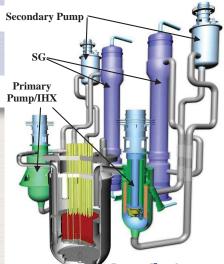

•Safety and Reliability

 low risk of core damage, no EP

International Forum

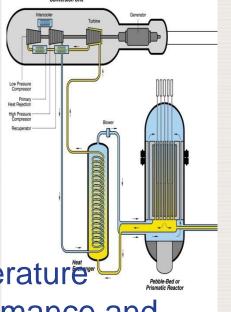
Participating Nations for Generation IV System Developments

and a


Generation IV Systems	Argentina	Brazil	Canada	France	Japan	₩ ₩ Korea	South Africa	Switzer land	U.K.	U.S.A.	EU	*: China	Russia
Sodium-cooled Fast Reactor (SFR)				0	Ø	0				0	0	0	(0)
Very-high Temperature Gas- cooled Reactor (VHTR)			0	0	0	0	(O)	0		0	Ø	0	
Gas-cooled Fast Reactor (GFR)				Ø	0			0			0		
Supercritical-water cooled Reactor (SCWR)			0		0						Ø		
Lead-cooled Fast Reactor (LFR)					0					0	0		
Molten Salt Reactor				0						0	0		

Sodium Fast Rector outlook

- Strong national programs and experience
- Goal: Complete performance phase by 2015
- Gather fresh operating experience from existing, new and restarting reactors
- Key technical focus
 - Advanced fuels including actinide recycling
 - Converge safety approach
 - Resolve feasibility issues regarding in-service inspection and repair
 - Energy conversion systems
 - Codes and standards for high temperature application (550 C)



Very High Temperature Reactor outlook

- Strong national programs and GIF arrangements
- Benefits from large national programs with plans for nearterm prototype construction of GCRs with outlet temperatures of 750-850 C.
- Goal: Complete viability phase in 2010
- Technical focus
 - TRISO fuel (oxide and oxicarbide)
 - Hydrogen production processes
 - Core and cooling system materials
- Requirements for R&D, set power and temperature requirements (900-1000 C), move into performance and design optimization phase.

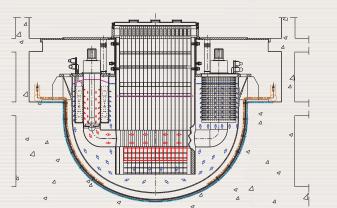
Supercritical Water-Cooled Reactor outlook

- Merges GEN-III+ reactor technology with advanced supercritical plant technology
- Pressure vessel and pressure tube options; fast and thermal spectrum options (565 C)
- Goal: Improve knowledge base to optimize designs
- Key technology focus:
 - Materials, water chemistry, radiolysis
 - Thermal hydraulics and property changes around the critical point

Gas-cooled Fast Reactor outlook

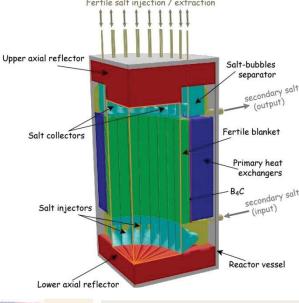
- Limited experience; some benefit from VHTR
- Goal: Complete viability experiments by 2012
- Key technical focus:
 - SiC clad carbide fuel

- Safety—transient accident analysis
- Components and materials (850 C)



Lead Fast Reactor outlook

- No formal GIF arrangement; provisional participation
- Goal: Resolve feasibility with respect to components and corrosion control
- Key technical focus:
 - Materials
 - Design features
 - Operating parameters (800 C)



Molten Salt Reactor outlook

- No formal GIF arrangement; provisional participation
- Goal: Develop design features, processing systems and operating parameters within 5 years
- Divergent paths: solid fuel with molten salt coolant; dissolved fuel in molten salt coolant
- Key technical focus
 - Resolve feasibility issues
 - Assess performance of candidate designs
 - Materials
 - In-service inspection
 - On-line salt treatment

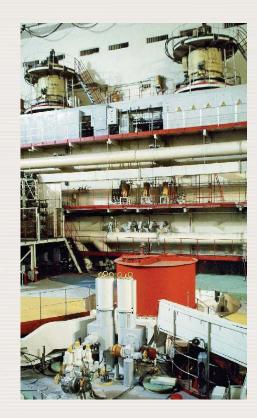
Outlook for horizontal activities

- Economics Methodology Working Group
 - Tool set tested on several systems
 - Available through the NEA
 - Effort is "mature"
- Risk and Safety Working Group
 - Goal is to produce an integrated framework based on PRA
 - Effort is well established; perhaps ripe for re-assessment
- Proliferation Resistance and Physical Protection WG
 - Developing methodology that has been tested on example systems

Would benefit from more feedback from GIF Systems
 IAEA

Summary of GIF Status

- The GIF provides a unique framework for sharing the R&D burden of developing promising nuclear systems through the feasibility, viability and performance phases.
- The systems have some common challenges
 - Higher temperatures for greater efficiency and in some cases additional applications beyond electricity
 - Materials required for the higher temperature and in some cases corrosive environment
 - Advanced components including power conversion
 - Robust, reliable fuel
- Constant pressure to include old/new ideas (thorium, small reactors, etc.) in the light of new developments
- The interface with IAEA/INPRO provides an excellent
 opportunity to assess allocation of effort.


Fast Reactors

BN-600 (Russia) BASIC OPERATIONAL PARAMETERS

On 08.04.2011, the power unit No.3 of the Beloyarsk NPP with the BN-600 reactor, being the largest operating sodium-cooled fast reactor in the world, celebrated the 31st anniversary since it was connected to the grid

As of 21.12.2010, the BN-600 power unit:

- had been in critical condition more than 213 000 hours;
- had produced about 116.5 billion kW-h of electricity;
- had operated with average value of the load factor for the period of its commercial operation since 1982 equal to 73.95%.

On April 7, 2010, the Beloyarsk NPP received the Rostechnadzor's license for lifetime extension of the BN-600 power unit up to March 31, 2020.

On April 13, 2011, the BN-600 power unit was shutdown in accordance with scheduled and standard preventive maintenance works and refueling are performed now.

In 2010:

- 3932.61 million kW·h of electricity had been produced,
- 256 Tcal of heat had been delivered for heat consumers from power unit's collectors.
- NPP load factor was equal to 74.82%.

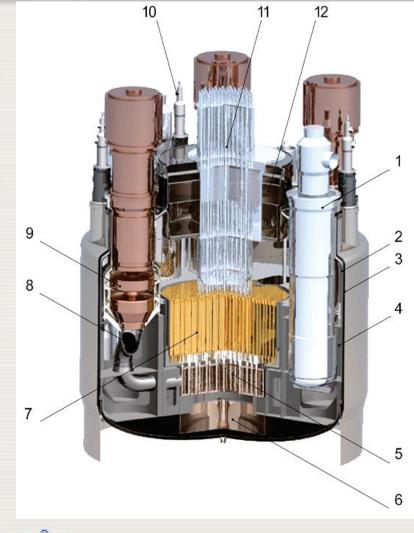
BN-800 (Russia) under advanced construction

Bird's-eye view of the BN-800 power unit

BN-800 (Russia) under advanced construction

Bird's-eye view of the reactor compartment of the main building

BN-800 (Russia) under advanced construction



Bird's-eye view of the turbine hall

11

BN-1200 (Russia)

1 – IHX;

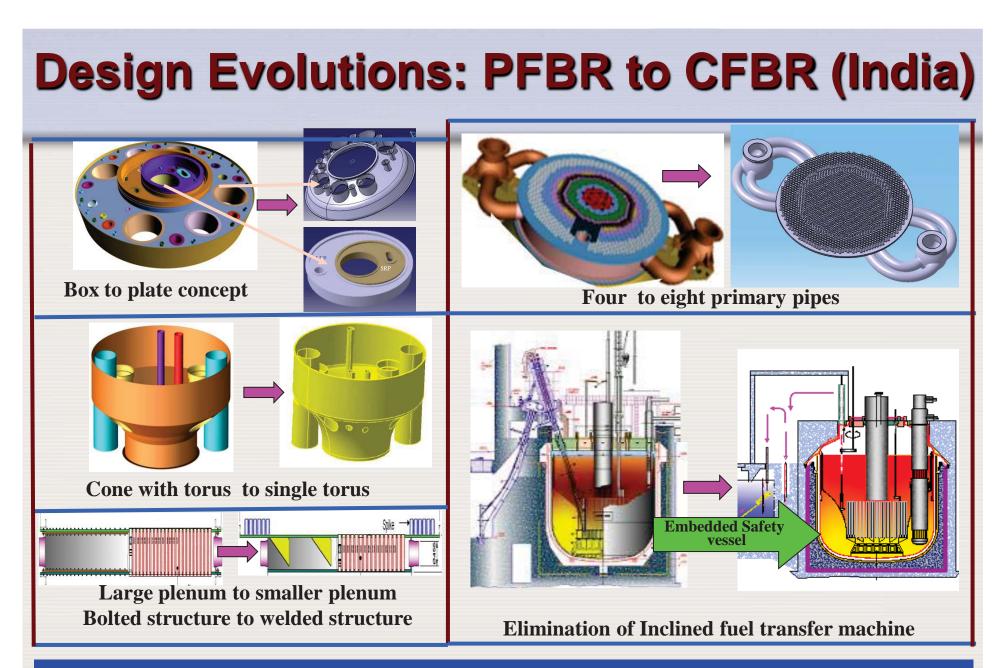
- 2, 3 main and secondary pressure vessels respectively;
- 4 supporting structure;
- 5 inlet plenum;
- 6 core debris tray;
- 7 core;
- 8 pressure pipeline;
- 9 MCP-1;
- 10 refueling mechanism;
- 11 CRDM;
- 12 rotating plugs.

PFBR (India)

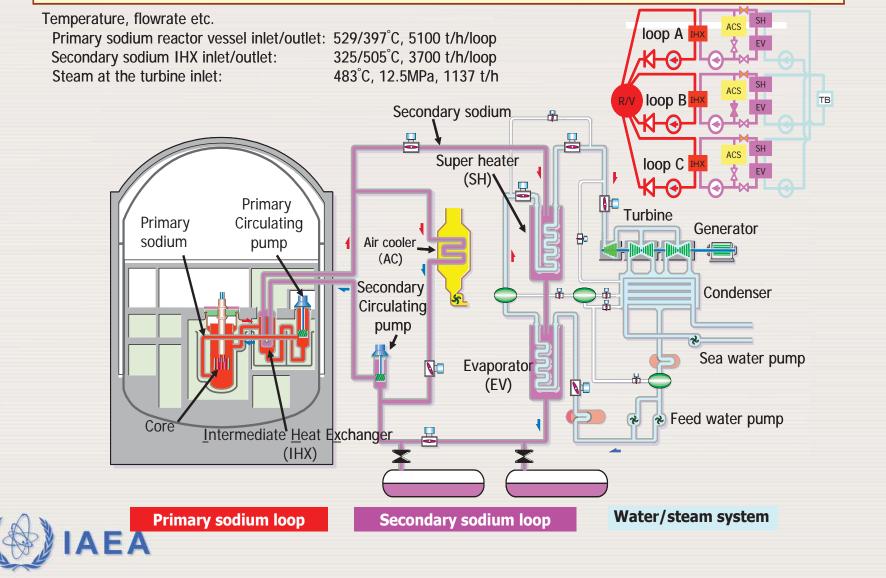
Nuclear island connected building was completed and the roof of reactor containment building was concreted partially

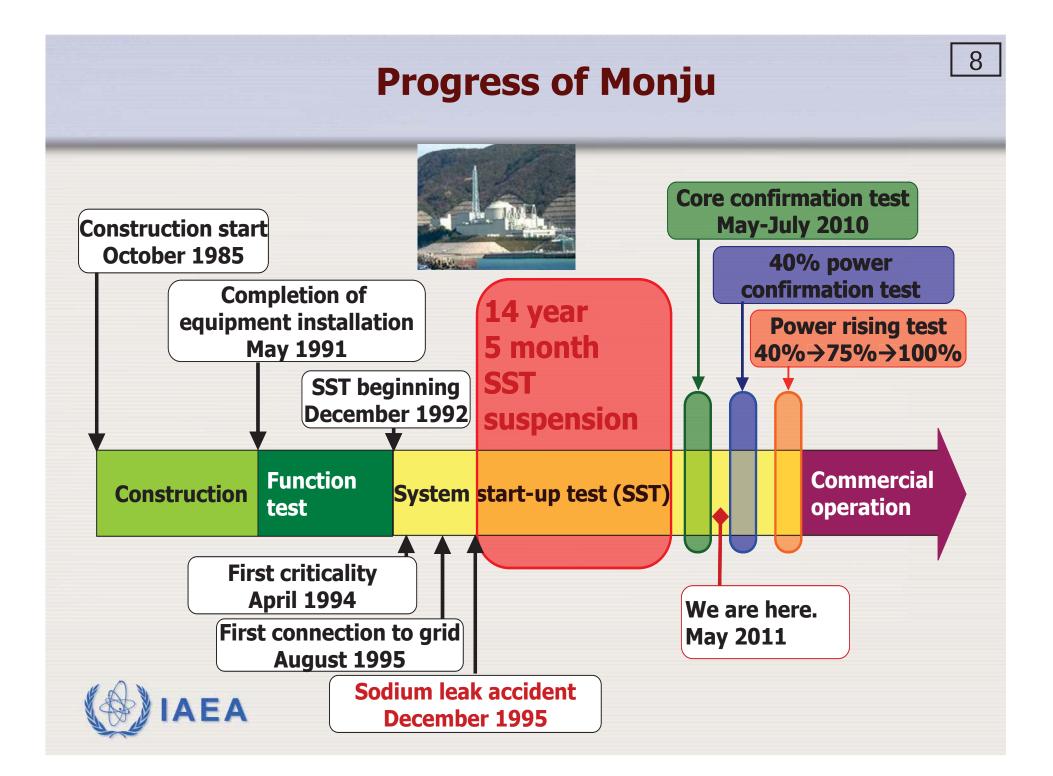
Lowering of Caisson in sea bed

- TG Deck concreting
- The raft of sea water pump house
- 3 stages concreting of volute pump.

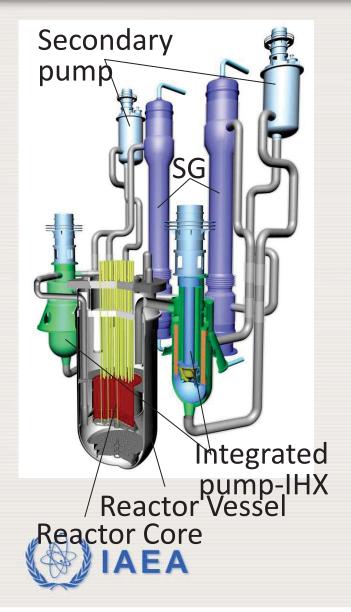

Overall view of Turbine building

Overall view of NICB

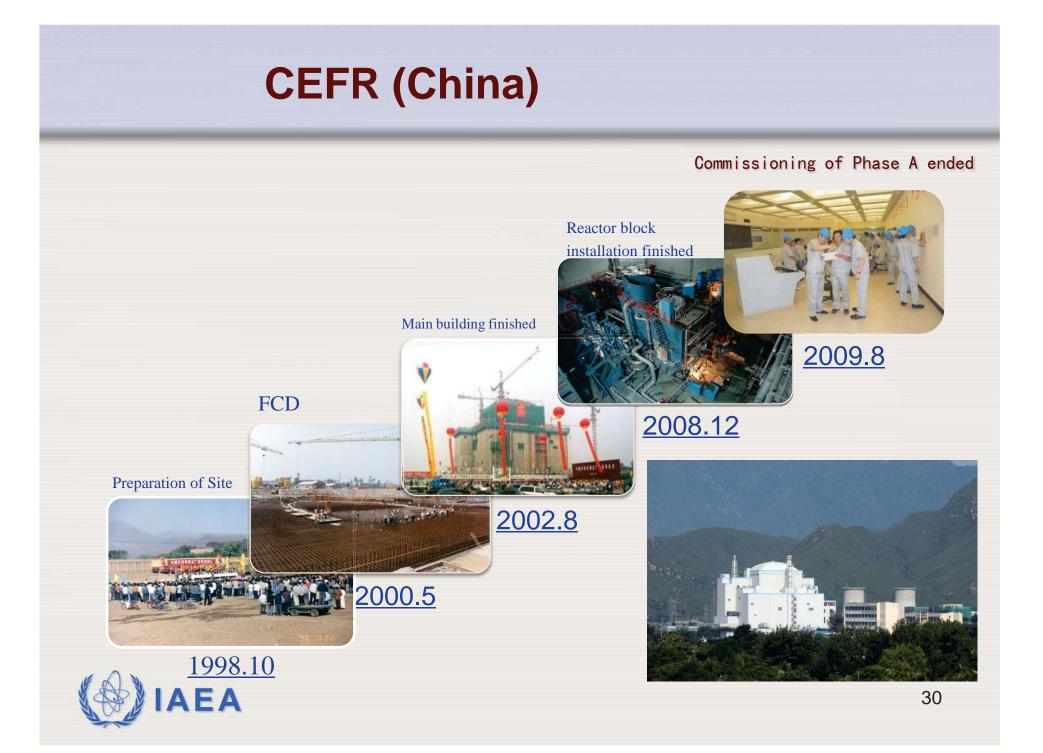

33m girders & trolley of 280/85 T EOT in RCB



Material inventory reduction~ 25%, Simplified fuel handling scheme, Reduced manufacture time, Enhanced safety


Schematic of Monju (Japan)

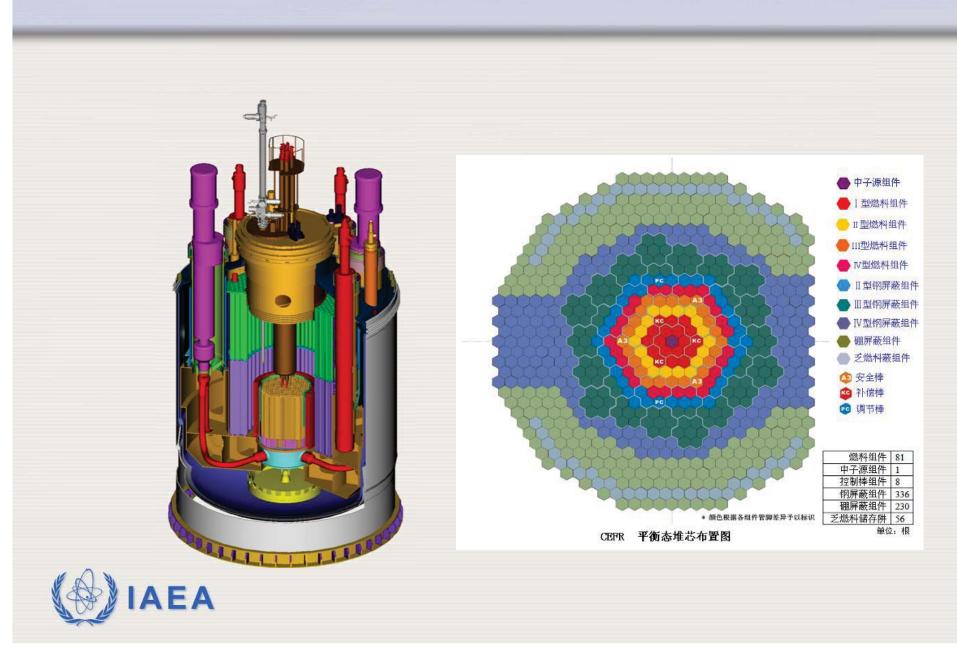
Electricity Output : 280MWe (714MWt), Sodium Coolant, MOX Fuel Core



Japan Sodium-cooled Fast Reactor (JSFR)

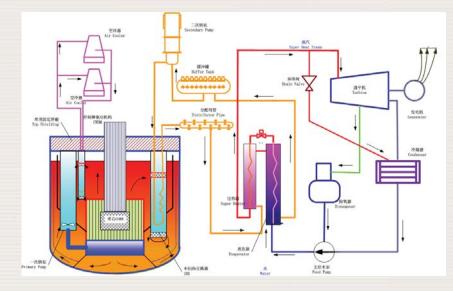
Items	Specifications
Output	3,530MWt / 1,500MWe
Number of loops	2
Primary sodium temperature	550 /395 degree C
Secondary sodium temperature	520 / 335 degree C
Main steam temperature and pressure	497 degree C 18.7 MPa
Feed water temperature	240 degree C
Thermal efficiency of plant	Approx. 42%
Fuel type	TRU-MOX
Breeding ratio	Break even (1.03) ~ 1.2
Cycle length	26 months or less, 4 batches

23



Main parameters of CEFR

Parameter	<u>Unit</u>	<u>Value</u>	Parameter	<u>Unit</u>	<u>Value</u>
Thermal Power	MW	<u>65</u>	Primary Circuit		
Electric Power, net	MW	<u>20</u>	Number of Loops		2
Reactor Core			Quantity of Sodium	<u>t</u>	<u>260</u>
<u>Height</u>	<u>cm</u>	<u>45.0</u>	Flow Rate, total	<u>t/h</u>	<u>1328.4</u>
Diameter Equivalent	<u>cm</u>	<u>60.0</u>	Number of IHX per Loop		<u>2</u>
<u>Fuel</u>		<u>(Pu, U)O₂ (first loading is UO₂)</u>	Secondary Circuit		
Linear Power max.	<u>W/cm</u>	<u>430</u>	Number of Loop		2
Neutron Flux	<u>n/cm²·s</u>	3.7×10^{15}	Quantity of Sodium	<u>t</u>	<u>48.2</u>
Bum-up, first load max.	<u>MWd/t</u>	<u>60000</u>	Flow Rate	<u>t/h</u>	<u>986.4</u>
Inlet/outlet Temp. of the Core	<u>°C</u>	<u>360/530</u>	Tertiary Circuit		
Diameter of Main Vessel(outside)	<u>m</u>	<u>8.010</u>	Steam Temperature	<u>°C</u>	<u>480</u>
Design Life	<u>A</u>	<u>30</u>	Steam Pressure	<u>MPa</u>	<u>14</u>
			Flow Rate	<u>t/h</u>	<u>96.2</u>



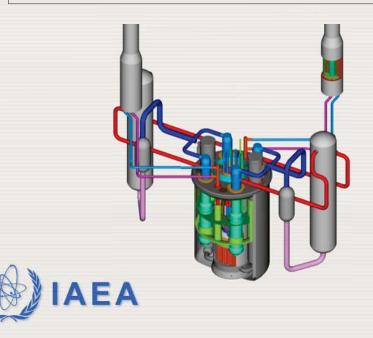
Reactor block and reactor core

CFR-1000 (China)

- 2500MWth, ~1000MWe
- MOX fuel
- BR=1.2
- Sodium as coolant
- Na-Na-H₂O loops with 3 circuits of primary and secondary loop
- One turbine
- Negative feedback
- Confinement
- CDR<10⁻⁶
- Life>40y

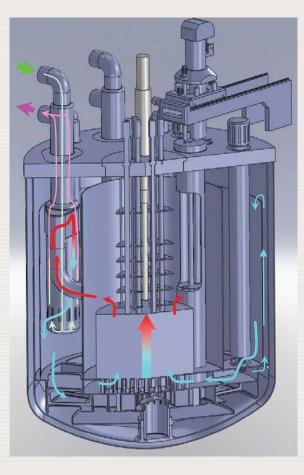
CFR-1000 scheme

Main parameters of CFR-1000


Parameters	Value		
Thermal power	2500 MWt		
Electricity power	1000 MWe		
Efficiency	40%		
Loading factor	80%		
Life time	>40y		
Fuel	MOX		
Coolant	Sodium		
Primary loop type	Pool		
Burn up (average)	66 MWd/kg		
Burn up (maximum)	100 MWd/kg		
Breeding ratio	1.2		
Number of fuel subassembly	184/132		
(inner/out zone)			
Enrichment (Inner/out)	15.3%/19%		
Liner power (maximum)	29.3/49 kW/m		
Total number of fuel SA	316		
Rods number per SA	271		

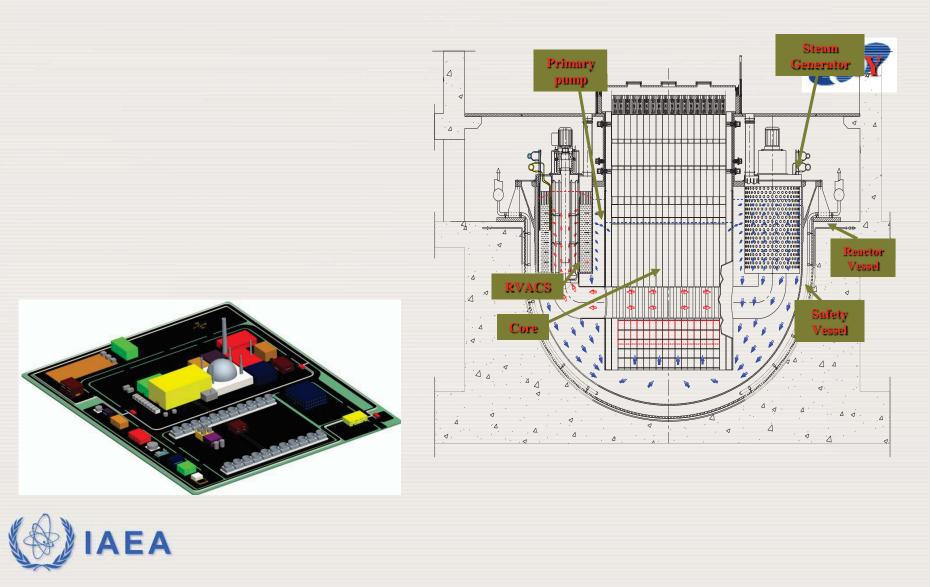
Parameters	Value		
Number of control rods	30		
Number of safety rod/shim	6/19/2		
rod/regulatory rod			
Passive control rods	3		
Blanket SA	255		
Reflector SA	426		
Spent fuel SA storage trap	381		
Inner diameter of MV	14000 mm		
Thickness of MV	30 mm		
Sodium temperature (core	354/547°C		
inlet/outlet)			
Sodium temperature (IHX	544/352°C		
inlet/outlet)			
Primary loop flow rate	10100 kg/s		
oop number (Primary/secondary)	3/3		
Pump number per loop	1/1		
IHX number per loop	2		

Kalimer – 600 (Republic of Korea)


- Reactor type : pool type

- Plant size : 600MWe
- Plant design lifetime : 60 years
- Design basis earthquake (SSE: 0.3g)
- Initial core : U-Zr metal fuel
- Reloading core : U-TRU-Zr metal fuel

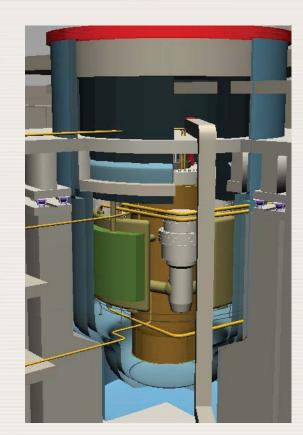
- Plant thermal efficiency : Net > 38%
- Plant availability \geq 70 %
- Refueling interval
- . U-Zr initial core $:\ge 6$ months
- . TRU burner core : \geq 11 months
- Spent fuel storage capacity in RV
 - \geq 1.5 cycle discharge
- 100 % off-site load rejection w/o a plant trip
- Safety grade diesel generator


ASTRID (France): Advanced Sodium Technological Reactor for Indusrial Demonstration (approx. 600 MW_e)

Preconceptual study by AREVA

- French government (CEA) led project: national loan 650 M€
- Industry participation EDF operations feedback from previous reactors, utility requirements and design, safety (all aspects)
- Industry participation AREVA : from pre conceptual to detailed design studies for the Nuclear Steam Supply System
- Other industrial partners are invited by CEA
- Current project phase: design choices to move from pre conceptual design to conceptual design coupled to ongoing R&D
- and discuss with the regulator the safety orientations (2012)

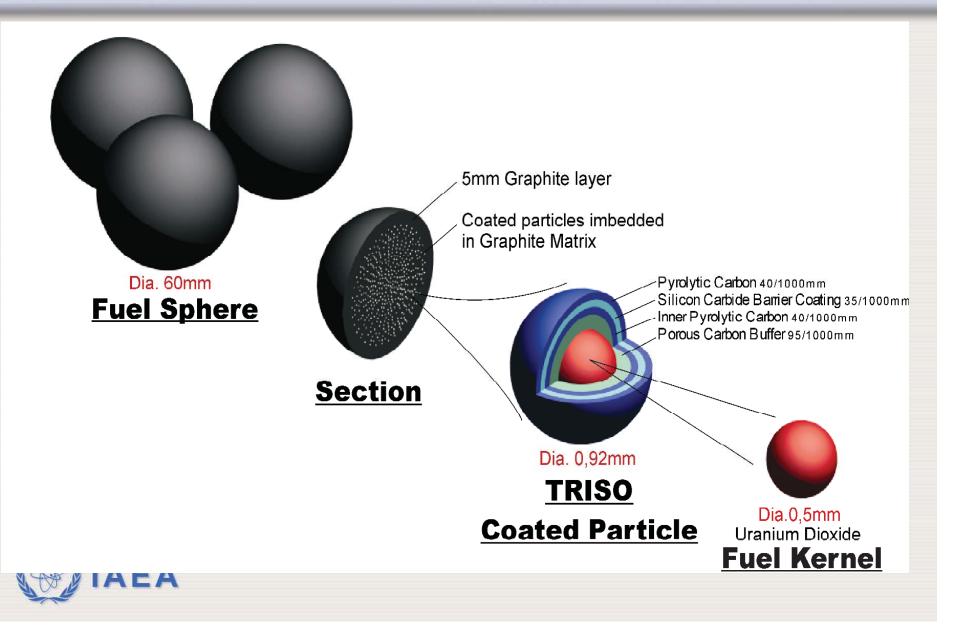
ELSY - European Lead-cooled System

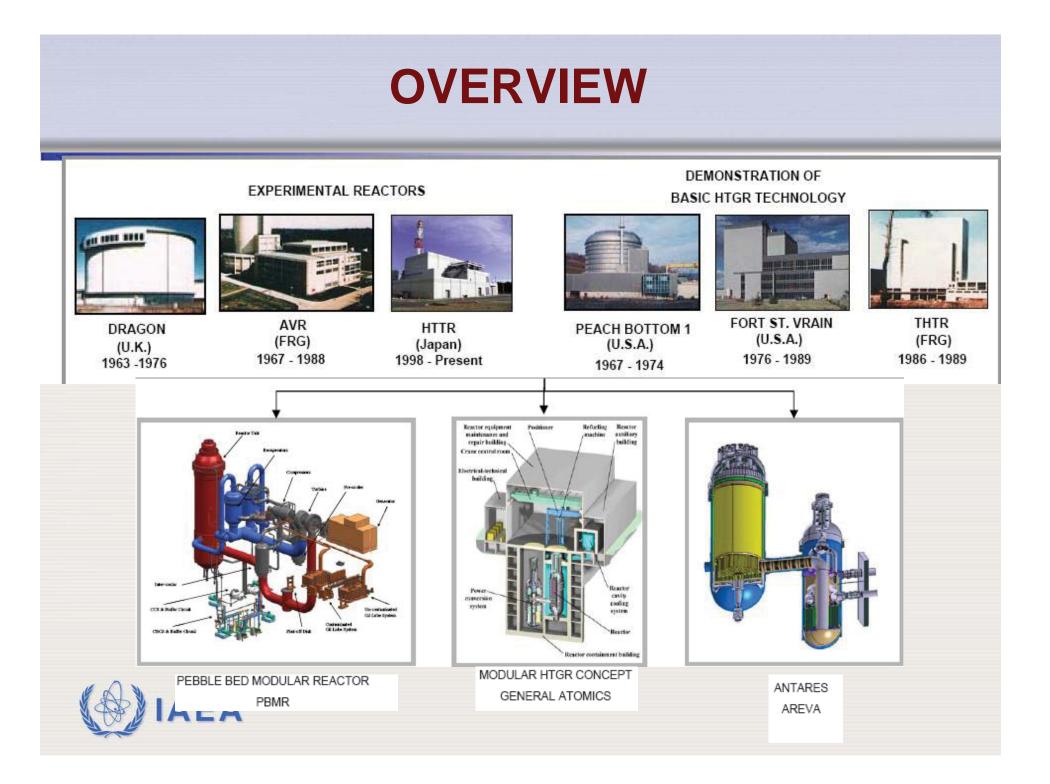

Main parameters of ELSY (now LEADER)

	ELSY
Power, MWe	600
Thermal efficiency %	42
Primary coolant	Pure lead
Primary coolant circulation (at power)	Forced
Primary coolant circulation for DHR	Natural
Core inlet temperature °C	~ 400
Core outlet temperature °C	~ 480
Fuel	MOX with and without MA
Neutron spectrum	Fast
Fuel pin diameter, (mm)	10.5
Fuel cladding temperature (max) °C	~ 550
Active core dimensions Height/ equivalent diameter, (m)	0.9/4.32
Fuel column height. (mm)	900
N° Fuel Assemblies (FA)	162
FA geometry	Open
FA pitch, (mm)	294
N° fuel pins / FA	428
Fuel pins pitch at 20°C, (mm)	13.9 square
Enrichment, (%wt HM)	14.54/17.63/20.61 Pu, three radial zones
Power conversion system working fluid	Water-superheated steam at 18 MPa, 450°C
Primary/secondary heat transfer system	Eight Pb-to-H2O SGs

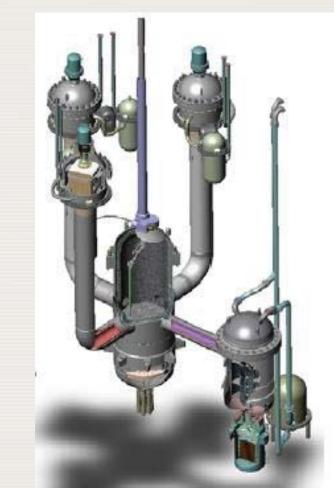
PEACER-300 (SNU, RoK)

3D CAD Drawing of PEACER-300




Parameter	Value
Power (MWe/MWt/efficiency)	300/850/35.3
Core outlet/inlet coolant temperature (°C)	400 / 300
Primary coolant	Pb-Bi (45-55 Wt. %) eutectic alloy
Primary system cover gas pressure (atm)	1.0
Primary coolant flow rate (kg/sec)	58 000
Average power density, MWt/ m ³	205
Average discharge burnup (GWd/t)	76.6
Fuel composition	U-TRU-Zr (57-32-11 Wt. %)
	3 TRU Enrichment Zoning
	Smeared Density : 67%
Fuel assembly	PWR type open lattice (square array without
	wrapper)
Cladding material	HT-9
Fuel/coolant volume fraction	0.159/0.677
Fuel assembly lifetime (year)	3
Fuel pin diameter, cm	0.832
Fuel rod pitch to diameter ratio	1.44
Active core dimensions: height /	0.50/3.82
diameter, m	
Energy converter / balance of plant	Superheated steam cycle
Fuel cycle strategy	Full actinide recycle using pyrochemical partitioning facility
In core management	3 Batch annual reload
Passive safety	Negative temperature coefficient and Pb-Bi natural circulation
Emergency decay heat removal	Guard vessel cooling by natural circulation of air; always in effect and enhanced by LBE flooding during emergency
Design seismic acceleration (g) (horizontal, vertical)	3D Seismic Isolators (0.3, 0.2)
Electric capacity factor	90%
	39

Gas cooled Reactors



SALIENT FEATURES

European Gas Fast Reactor Prototype: Allegro

- Longer term alternative technology of fast spectrum reactors for sustainability
- Able to deliver high temperature heat for industrial processes (H₂ production)
- After an R&D program to consolidate preconceptual design options, ALLEGRO demonstrator (70-100 MW_e) to be launched in 2012
- Central European ALLEGRO Consortium: Czek Republic, Slovakia, Hungary
- Ongoing process for Site selection and site permit (Eastern Europe)
- Euratom GoFastR collaborative project in support (22 partners)

Material Test Reactors

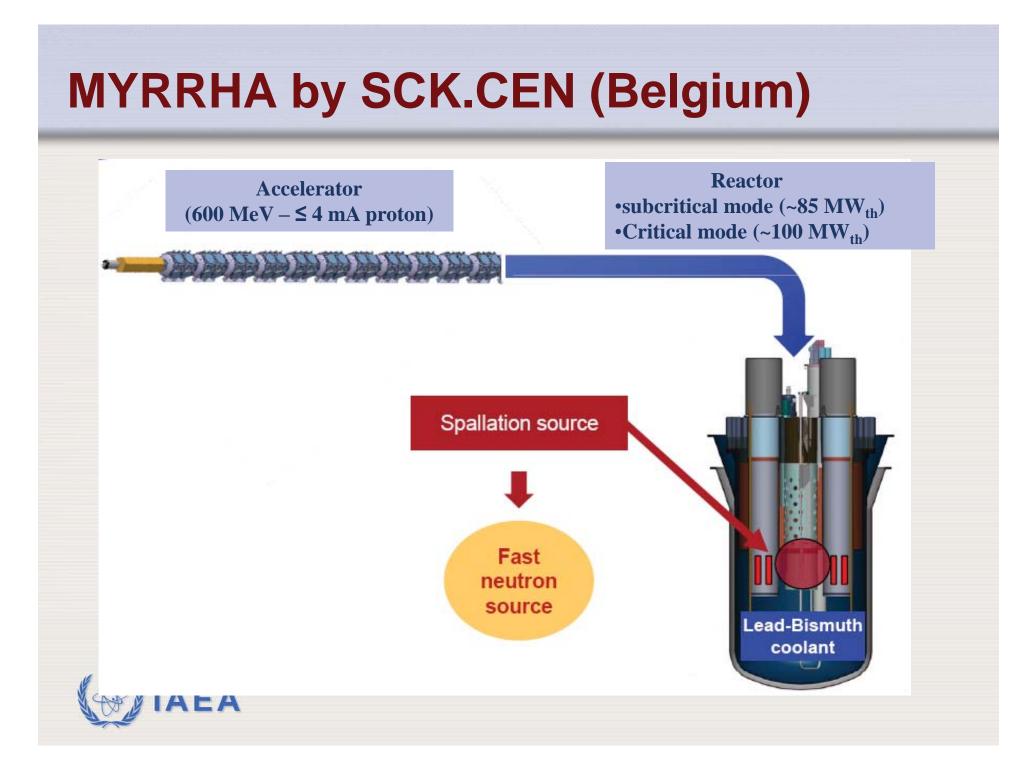
Jules Horowitz Reactor (*France*) a new European Testing Reactor

Marily.

NUCLEAR AUXILIARIES BUILDING

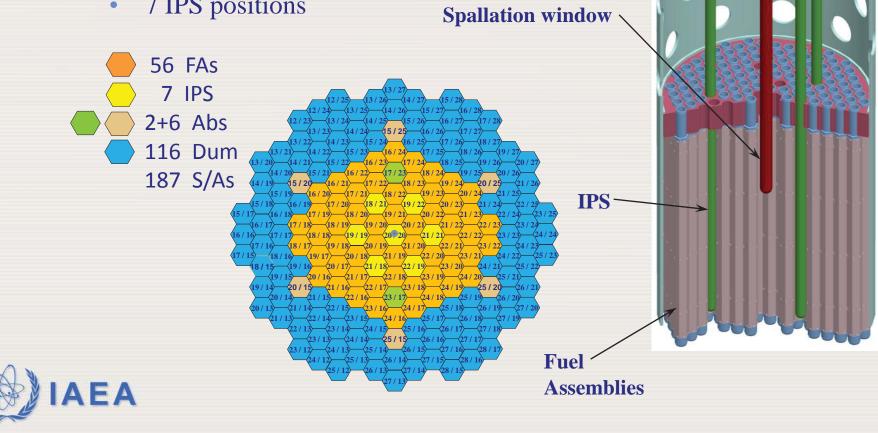
JHR power = 100MW Start of operation 2014


REACTOR BUILDING


Reactor pool

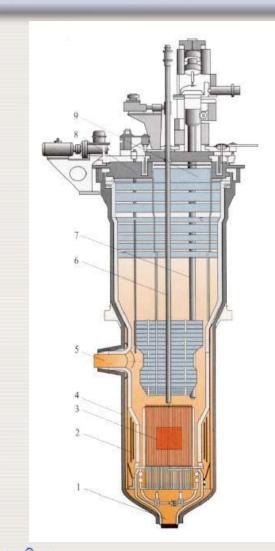
JHR characteristics

51,12m x 46,75m + Φ36.6m H 34,4m + H44,9 m

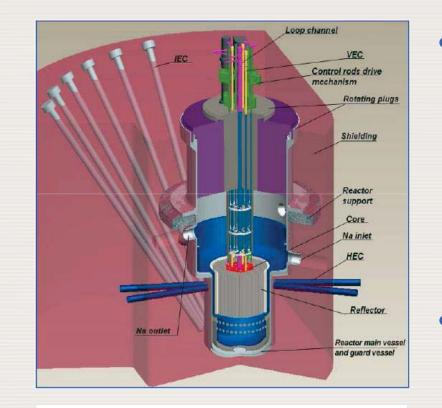

Hot cells & storage pools

MYRRHA Core

- $k_{eff} \approx 0.95$ (ADS mode)
- 30-35 % MOX fuel •
- 7 IPS positions •


BOR-60 (Russia) BASIC OPERATIONAL PARAMETERS

- The BOR-60 reactor is used for:
 - Material tests;
 - Isotopes production (nickel-63, strontium-89, gadolinium-153);
 - Tests of the various equipments of fast reactors;
 - Heat and electricity production.
 - BOR-60 reactor facility is in operation more than 41 years.
 - In December 2009, Rostechnadzor has issued a license to RIAR for further operation of the BOR-60 reactor facility up to 31.12.2014.


INDICES OF BOR-60 REACTOR OPERATION IN 2010

AEA

Time of reactor operation on power exceeding minimum controlled level, h	5245
Reactor load factor	0.6
Max reactor power, MW	53
Energy output: heat, MW·h electricity, MW·h	251805 38480
Time of SG operation: SG-1, h SG-2, h	5173 5173
Heat delivery to consumers, Gcal	47451

MBIR (Russia)

Lay-out of the MBIR reactor vessel and its experimental channels

 Na-cooled Research Fast Reactor aimed at in-pile tests of new types of fuel, structural materials and various FR coolants (including Pb and Pb-Bi)

• Start-up of MBIR is scheduled in 2019.

BASIC CHARACTERISTICS OF THE MBIR REACTOR

Parameter	Value
Thermal power, MW	~150
Electric power, MW	~40
Maximum neutron flux density, n·cm ⁻² ·s ⁻¹	~6.0·10 ¹⁵
Driven fuel	Vi-pack-MOX, (PuN+UN)
Test fuel	Innovative fuels, MA fuels and targets
Core height, mm	600
Maximum core power density, kW/I	1100
Maximum neutron fluence per year, n.cm ⁻²	~ 1.10 ²³ (up to 45 dpa)
Design lifetime, year	50
Number of autonomous test loops with different coolants	up to 4
Total number of experimental subassemblies and target devices for radioisotope production	up to 12 (core) up to 5 (radial shielding)
Number of experimental channels	up to 3 (core)
Number of experimental horizontal channels	up to 6 (outside reactor vessel)
Number of experimental vertical channels	up to 8 (outside reactor vessel)

http://www.iaea.org/inisnkm/nkm/aws/fnss/index.html

Thanks for Your Attention !

...Atoms for Peace

