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Fluid-Gravity Duality
at a Cutoff Surface

1006.1902, 1101.2451; 
with I. Bredberg, V. Lysov, and A. Strominger



History of Fluid/Gravity Duality:
Membrane Paradigm

• Began with prescient thesis of Damour in 1978

• Consider fluctuations of a black hole horizon; these act like a viscous fluid

• Fluid viscosity is computed to be 

• Dividing by entropy density                    gives 

• Always considers fluctuations at the black hole horizon                itself; produces
Damour-Navier-Stokes equation
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History of Fluid/Gravity Duality:
AdS/CFT Method

• Policastro, Son, and Starinets (2001) considered the hydrodynamics of
                            SYM via AdS/CFT

• Again produces 

• Performed at AdS spatial infinity 

• Result requires string theory, SUSY gauge theory, and AdS/CFT

• Initially                   appeared to be a bound on the viscosity to entropy ratio;
however higher derivative corrections actually break this bound
(e.g. Kats, Petrov, Buchel, Myers, Sinha, Cremonini, Brigante, Liu, Shenker, Yaida, Cai, Nie,
Ohta, Sun, Banerjee, Dutta, Paulos, Escobedo, Smolkin, Dasgupta, Mia, Gale, Jeon ...)
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A "Wilsonian" Approach

We want to relate solutions of the incompressible Navier-Stokes equation

to those of the Einstein equation:

We fix a cutoff surface at $r=r_c$, and
consider experiments done there.

• induced metric at $r=r_c$ is Ricci flat
• waves are infalling at $r=r_h$
• extrinsic curvature at $r=r_c$ 
  becomes fluid stress tensor

Gµν = 0,

∂ivi = 0, ∂τvi − η∂2vi + ∂iP + vj∂jvi = 0
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The Hydrodynamic Limit

Consider a solution of the incompressible Navier-Stokes equation             . 

Now, rescale:

These new quantities solve

which is again just the N-S equation.

To produce the hydrodynamic limit, we take           .
This procedure will remove any corrections to N-S, as well as inducing
incompressibility.
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The Nonlinear Metric in the Hydrodynamic Limit

We consider the metric

with                                                                         .

Induced metric at cutoff is flat, and there are no singularities at r=0, so this
satisfies our boundary conditions.

Does this solve the Einstein vacuum equations?
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Satisfying the Einstein Constraints

The metric above satisfies the constraint equations through           iff

The constraint equation at      becomes

with the specific value              for the viscosity.

We must also show that the solution can be evolved consistently towards the
horizon.  Direct computation shows

and these components are nonsingular for finite r.
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Towards a Near-Horizon Limit: Rescaling in

• hydrodynamic limit is related to a near-horizon limit

• Begin by rescaling coordinates:

• Additionally rescale metric overall:

• Define

Now we obtain:

Only      is left!
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The Near-Horizon Expansion

• Consider Rindler wedge with boundary at r=1 (rescaled as                      ):

• For small v, we found the linearized solution in 1006.1902

• Extending to a nonlinear generalization we find:

plus higher order corrections.

Relabel                                                   and we recover the   -dependent metric!
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Highlights of Cutoff Approach

• does not require AdS (or any other asymptotics)

• in long wavelength limit, works at any radius 

• Equivalently one can take a near horizon limit      ->0

• physical quantities such as diffusion constant have a local definition on 

• spacetime is algebraically special
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Petrov Type

• Spacetimes are algebraically special, or of higher Petrov type, when principal
null vectors coincide.  This corresponds to certain null projections of Weyl tensor
vanishing, e.g. for Petrov type II: there exists a real null vector       which satisfies

• In 1101.2451, we showed that 4d fluid-dual spacetimes are Petrov type II
through 14th order.

• Lysov, Strominger 1104.5502 examined the imposition of Petrov type I as a
condition on the spacetime instead of infalling conditions at a horizon

kµ

Wµνρ[σkλ]k
νkρ = 0.



Schwarzschild and K=constant
cutoff boundary conditions

• To produce fluid solutions in a true Schwarzschild geometry,
Bredberg+Strominger (1106.3084) considered a new set of boundary conditions
(also see appendix of 1104.5502).

• set induced metric to be only conformally flat:

• instead fix extrinsic curvature:

• continue imposing infalling conditions at horizon

And you find the remaining degrees of freedom satisfy Navier-Stokes on a sphere!

ds2p+1 = e2ρηabdxadxb = e2ρ(−(dx0)2 + dxidxi),

K = e−2ρηabKab = 1
2λ



Linearized Results

• linearized limit (with uniqueness) done in 1006.1902; nonlinear embedding in
1101.2451

• Radial evolution of                                                  is just a component of Einstein
equation

• Diffusion constant must decrease with increasing radius assuming null energy
condition:

where we define the diffusion constant by

• Forcing solutions...

S = βE + βPVp − βµQ.

∂rcD̄c ≤ 0.
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Forcing the fluid

Consider the metric

where       and      are functions of only x and satisfy

We find

so the velocity field is zero for 
and jumps to          at           .
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Conclusions and etc.

• We can embed any solution of Navier-Stokes as data on a flat hypersurface in
a solution of Einstein equations

• The solutions of Einstein equations combined with the boundary conditions we
impose correspond one-to-one with solutions of incompressible Navier-Stokes

• Our near-horizon limit provides a precise mathematical sense in which horizons
are incompressible fluids

• This approach is asymptotics-agnostic

Future possibilities:
• Uniqueness, existence of both GR and NS solutions
• Understanding gravity geometry of specific solutions (e.g. vortex)
• Forcing at the nonlinear level
• Relationship between NS scalings and spacetime radius scalings


