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η/s = 1/4π
η/s = 2/4π

η/s = 0

Thermalization & perfect fluid
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LHC results agree 
almost  perfectly with RHIC
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Shear viscosity
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Song, Bass, Heinz, Hirano, Shen, PRL 106 (2011) 192301  [Duke - OSU - Tokyo]

Conclusion:  1 ≤ 4πη/s ≤ 2.5

Remaining uncertainty mainly due to initial density profile
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Event-by-event fluctuations
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Initial state generated in A+A collision is grainy
event plane ≠ reaction plane

 eccentricities ε1, ε2, ε3, ε4, etc. ≠ 0

 flows v1, v2, v3, v4,...

Idea: Energy density fluctuations
in transverse plane from initial 
state quantum fluctuations. 
These thermalize to different 
temperatures locally and then 
propagate hydrodynamically to 
generate angular flow velocity 
fluctuations in the final state.

WMAP
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Centrality dependence
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Impact parameter b Impact parameter b
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Power spectrum
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Entropic history of a HI collision
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Density matrix
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The state of a system (ensemble) is specified by the density matrix: 

ρ = ρ†; tr ρ( ) = 1; tr ρ2( ) ≤1; Ψ ρ Ψ ≥ 0 ∀ Ψ

The density matrix evolves according to the von Neumann equation: 

 
i

∂
∂t

ρ = H ,ρ[ ] → ρ t( ) = e− iHt / ρ 0( )eiHt /

SvN = tr ρ lnρ( )
The unitary time evolution implies that the von Neumann entropy

does not change with time: Information about the quantum system is never lost.

However, not all information about the quantum system may be recoverable
by an observer, in principle or in practice: “coarse graining” or “entanglement”.
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Equilibration
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Yukalov [Laser Phys. Lett. 8 (2011) 485] gives the following definition:

A system equilibrates from an initial state ρ(0), if the expectation value of all 
observables reaches a steady-state limit:

lim
t→∞

A t( ) = tr ρ*ρ (0)( )A⎡⎣ ⎤⎦

A system thermalizes, if the expectation value of all observables reaches a 
steady-state limit, which is independent of the initial state ρ(0):

lim
t→∞

A t( ) = tr ρ*A⎡⎣ ⎤⎦

A thermalized system is in a steady state and has “forgotten” all information 
about its initial state (except conserved quantum numbers).
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Thermalization
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Thermalization means that a system loses all information about its history.

This can happen in two ways:

1. The system exchanges information with its environment (heat bath). This is 
true thermalization. The thermal state of the system is characterized by a 
density matrix, which only depends on the conserved quantum numbers 
(energy, particle number, charge, etc.). The entropy of the system is a measure 
of its information loss to the environment. In this case, the quantum state of the 
system becomes entangled with the quantum state of its environment.

2. The state of the system evolves by itself into a complicated superposition of 
components that cannot be distinguished by any practical measurements. This 
is apparent thermalization, implied by the coarse graining inherent in physical 
observations. A single eigenstate of the system can appear thermal (eigenstate 
thermalization). The physical mechanism by which a system can evolve into 
such complex states under its own dynamics is called quantum chaos.
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Coarse-grained entropy
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Evolution of the “standard map” system: pn+1 = pn +
a

2π
sin(2πqn ); qn+1 = qn + pn (mod 1)

[M. Baranger, V. Latora, A. Rapisarda, Chaos, Solitons and Fractals 13 (2002) 471]
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Coarse-grained entropy
grows linearly after averaging 

over initial conditions: dS/dt = λ
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General picture
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S

S thermal

initial linear equilibrium phase

 = h KS
d S
d t

= ∑i λi

Initial fluctuations: initial state dependent

Relaxation to equilibrium

Extent of linear region depends on
log of ratio of thermal fluctuations
to amplitude of initial fluctuations.

Kolmogorov-Sinaï (KS)
entropy growth rate
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Nakajima-Zwanzig theory
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For a highly complex system (many degrees of freedom) usually only simple,
slowly varying observables (few-body, low resolution, etc.) can be measured.

Split the density matrix into a relevant part ρR that determines the value of the 
observable A and an irrelevant part ρI that has no influence on the value of A:

ρ = ρR + ρI with A = tr ρA( ) = tr ρRA( ); tr ρI A( ) = 0

Define a projection operator P such that: ρR = Pρ

Then:
∂
∂t

ρR = −PLρR(t)− iPL e
− i(1−P )LρI (0)− dτG(τ )ρR(t −τ )

0

t

∫

where
 
L = 1 H ,[ ] G(τ ) = PLe− i(1−P )Lτ 1− P( )LP

[For a review, see e.g.: J. Rau, BM, Physics Reports 272 (1996) 1]

(memory kernel)
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Time scales
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An important question is which observables A should be considered to define 
the relevant part ρR of the density matrix. These should be experimentally 
measurable quantities, which implies that they should vary only on observable 
time scales: they must be slowly varying observables.

In many cases the memory kernel, which describes the feedback from the 
irrelevant degrees of freedom, decays much faster than the characteristic time 
scale on which the value of the observables change. The evolution equation for 
ρR  then becomes effectively Markoff.

Any analysis of the problem of entropy creation and thermalization in the 
Nakajima-Zwanzig formalism thus starts from an analysis of time scales.

Note: The projector P  ensuring tr(PρA) = tr(ρA) is called the Kawasaki-Gunton 
projector; the resulting evolution equation for ρR is called the Robertson 
equation. Because ρ is time dependent, P depends on time. 
An alternative formulation is due to Mori, who defined the projector such that    
tr(PMρeqA) = tr(ρeqA), which makes PM time independent.
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Relevant entropy
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The relevant entropy SR = tr(ρR ln ρR)  generally increases with time (but not
necessarily monotonously), because information gets transferred into irrelevant 
degrees of freedom.  Special case:  1-P = projector on the environment.

The relevant entropy is “in the eye of the beholder”.

C = conserved observables
E = experimentally relevant observables
S = “slowly varying” observables
A = all observables

Markov approximation

relevant entropy

= R

Good if large separation of time scales
“Level of description” of the system
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Omphaloskepsis?
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The relevant entropy is “in the eye of the beholder”. 

Does this mean that it is not a property of the system? 
Or can an isolated system “observe itself” ?  

In a certain sense, yes: A system “observes itself” via the Hamiltonian, which 
governs its time evolution. But the Hamiltonian generally has special properties:

●  Only 2-body interactions for non-relativistic many-body systems;
●  Only local interactions for quantum field theories.

 The short-term evolution of a quantum system is thus oblivious to many-body 
or long-range correlations. From the “point of view of the system itself” they form
part of the irrelevant density matrix ρI.

 The parts of a system hidden behind an event horizon are always irrelevant 
for its observable time evolution.
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Entanglement entropy - I
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A

B

SA = −TrA ρA lnρA( )

Consider a vacuum QFT in a large box.

An observer restricted to subvolume A 
will experience a reduced density matrix

ρA = TrB (ρ) = TrB 0 0( )

The entanglement entropy between A and B is defined as

SA is a useful measure of how entangled the wave function of the ground state ｜0〉
is between A and B. Naïvely, one would expect that any mode component in A with 
wave number k “knows” about the presence of B if it is located within distance ħ/k of 
the boundary.

It measures the loss of information to the observer from not knowing exactly what 
the state of the field in the subvolume A is, if she does not know the state in B.

Special case of Nakajima-Zwanzig projection!
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Entanglement entropy - II
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Therefore one expects (Srednicki, 1993):
 
SA ∼ ∂A( )∫

�
kk

kmax

∑ ∼κ ∂A kmax
2

The entanglement entropy is thus proportional to the surface area of A. If one
chooses kmax ~ MPl , SA becomes the Bekenstein entropy of a black hole with
surface area ||∂A||. Black hole entropy is thus a form of entanglement entropy.

Interactions introduce finite corrections to the UV divergent entanglement entropy.
These provide a measure of the range of quantum correlations in the ground state 
wave function. 

Another variant is when the QFT is not considered in the vacuum state, but at finite 
temperature T. The entanglement entropy then receives a contribution proportional
to ||A|| = Vol(A), which is precisely the thermal equilibrium entropy.

In QFT, SA can be generally calculated with the replica trick:

SA = −TrA ρA lnρA( ) = − limn→1
∂
∂n

TrA ρA
n( ) = − limn→1

∂
∂n

ZnA

ZA( )n
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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AdS/CFT
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For a (d+1)-dimensional QFT with a holographic gravity dual, SA can be calculated 
in the dual theory from the area of the extremal surface γA in the bulk, with has the
same boundary ∂A as A:   ∂(γA) = ∂A .

γA

B A

∂A SA =
γ A

4GN
(d+2)

B A

∂A

γA

event horizon

At finite temperature, a BH is present, 
and the surface γA picks up a part of the 
event horizon, thus accounting for the 
thermal equilibrium entropy of A.

see review by:
Nishioka, Ryu,
Takayanagi,
arXiv:0905.0932
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Entanglement entropy

22

d = 2 d = 3 d = 4

For details, see Ben Craps’ talk
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Husimi coarse graining
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A minimal coarse-graining of a quantum system is achieved by projecting its 
density matrix on a coherent state (Husimi [“Fushimi”] 1940):

 
H (x, p) = z ρ z with z =

x

Δ−1
+

p

Δ
⇒ ρH = z H z

The Husimi phase-space density is positive semi-definite and can be used to 
define a coarse grained entropy (Wehrl, 1978):

 
SH = −Tr ρH lnρH[ ] = −

dxdp

2π∫ H (x, p)lnH (x, p)

As opposed to the von Neumann entropy S = -Tr(ρlnρ), the Husimi-Wehrl entropy 
is not conserved by unitary evolution. Its value depends on Δ, but its growth rate 
at large times is independent of the smearing Δ (Kunihiro et al. [KMOS], 2008). 
Far off equilibrium it is equal to the Kolmogorov-Sinaï (KS) entropy growth rate:

 

dSH
dt

t→∞⎯ →⎯⎯ λα = SKS
α

λα >0

∑
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Husimi II
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HΔ(p, x; t) ≡
∫

dp′ dx′

π�
exp

(
− 1

�Δ
(p − p′)2 − Δ

�
(x − x′)2

)
W (p′, x′; t)

Hσ pσ x
(p, x;t) = dp 'dx '

2π σ pσ x

exp − (p − p ')
2

2σ p
2 − (x − x ')

2

2σ x
2

⎛

⎝⎜
⎞

⎠⎟∫ W (p ', x ';t)

Special case of Gaussian smearing with σpσx = ħ/2:

Husimi density can be understood as smearing of the Wigner function with a 
Gaussian minimum-uncertainty wave packet:

Formally, the Husimi transformation of the density matrix is of the form:

ρH = ΓHρ = Γ σ p ,σ x( )ρ
with σp2= ħΔ/2, σx2= ħ/2Δ. Note that Γ is not a projection operator:

Γ σ p ,σ x( )2 = Γ 2σ p , 2σ x( )
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ρH ∄ {ρR}: Formal proof
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Can the Husimi coarse graining be understood as a projection on “coarse”,
relevant degrees of freedom, i.e. can we find a projector  PH  so that

ρH = PHρ with PH
2 = PH ?

This implies: det ρH = detPH( )det ρ
detPH( )2 = detPH → detPH = 0 or detPH = 1Now:

Since the eigenvalues of  PH  are either 0 or 1:

detPH = 1 if PH = I; detPH = 0 otherwise.

Because  PH  cannot be I, we conclude that  det ρH = 0.  But ρH is diagonal in 
the coherent state basis; this implies that one diagonal element must vanish.

z ρH z = z ρ zBut                               , thus unless ρ has a zero diagonal element, i.e. in
general, such a projector  PH  cannot be found.
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Ĥ(t) =
p2

2
+

m(t)2

2
x2

m(t)2 =ω 2θ(−t) − λ2θ(t)

Quantum quench

26

The decay of an unstable vacuum state is a common problem, e.g., in cosmology 
and in condensed matter physics. Paradigm case:  inverted oscillator.

t = 0 t = 1 t = 2

t < 0 |Ψ(x)|²

|Ψ(x)|² |Ψ(x)|² |Ψ(x)|²

V(x)

V(x)V(x)V(x)

with

W (q, p; t) =
∫

du e−ipu〈q +
1
2
u| ρ̂(t) |q − 1

2
u〉Wigner function:
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Wigner vs. Husimi 
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t = 0

t = 0 t = 2

t = 2

Wigner
function

Husimi
function
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The ETH
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The Eigenstate Thermalization Hypothesis (ETH - Deutsch ʼ91, Srednicki ʼ94):

ΨE A ΨE = A
E , mc

for any complex many-body system and few-body operator A or other slowly 
varying observable.

Corollary: The eigenstate of a few-body operator A is superposition of energy 
eigenstates with thermally distributed probabilities:

 
ΨA = cEΨE with cE

2
∼ e−E /T

E
∑

Over time, phases of different components diverge from each other; eventually 
the pure state becomes indistinguishable from a mixed state:

 
ΨA(t) ΨA(t) = cEcE '

* ei(E '−E )t /

E ,E '
∑ ΨE ΨE '

t→∞⎯ →⎯⎯ cE
2 ΨE ΨE

E
∑

S→− cE
2
ln cE

2( )
E
∑
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Entropy growth

29

 
S(t)→− cEα

2
ln cEα

2( )
Eα

∑
 
cEα = cE

E−Eα ≤ 12ΔE (t )
∑where

with amplitudes remaining coherent within energy bands ΔE(t) ~ ħ/t.

Consider again the quantum quench to the inverted oscillator:

 
ΨE (x) ≈

2

π

cos 1 dx '
0

x

∫ pE (x ')

pE (x)
with pE (x) = 2E + λ 2x2

De-phasing leads to a block structure of the density matrix:

 
ρ(Eα , xβ ) ≈ Θ Δx − xβ − x0e

λt( )ΔE e−2Eα / ω

2π ωEα

with Δx ≈
2λx

T = ½ħω  is the “temperature” determined by the initial wave packet.

S(t) ≈ ρ(Eα , xβ )ln ρ(Eα , xβ )( )
xβ

∑
Eα

∑ = λt
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YM-QM model
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A simple example of a non-trivial chaotic quantum system is given by the infrared 
limit of SU(2) gauge theory (Yang-Mills Quantum Mechanics):

 
H =

1

2
pi
2

i=1

3

∑ +
g2

4
xi
2xk

2

i≠ k

3

∑

Further simplification: x1 = x, x2 = y, x3 = 0 (x-y model):
 
H =

1

2
px
2 + py

2( ) + g
2

2
x2y2

Solve equation of motion for Husimi density H(x,y,px,py,t) using superposition of 
Gaussians with time-dependent positions and widths: 

Evolution conserves the coarse grained Hamiltonian

  
H H =

1

2
px
2 + py

2( ) + g
2

2
x2y2 −

g2

4Δ
x2 + y2( ) + g

2 2

8Δ2
−
1

2
Δ

H (ξi ,t) = exp − cij (t) ξi − ξi
(α ) (t)( ) ξ j − ξ j

(α ) (t)( )
ij
∑⎡

⎣
⎢

⎤

⎦
⎥

α
∑ with ξi = (x, y, px , py )
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YM-QM - the movie
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Position space x1, x2 Momentum space p1, p2

Hung-Ming Tsai & BM, arXiv:1011.3508
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YM-QM equilibration
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YM-QM equilibration - II

33

Initial Husimi density is approximately 
a narrow microcanonical distribution 
peaked around E ≈ 100.  Final Wehrl 
entropy should agree with micro-
canonical equilibrium, and it does!
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Hung-Ming Tsai 

Due to Husimi
coarse graining
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Classical lattice SU(3)
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T. Kunihiro, BM, A. Ohnishi, A. Schäfer, T. Takahashi 
& A. Yamamoto, PRD 82 (2010) 114015

LLE = Local Lyapunov exponents:
= Eigenvalues of the Hesse matrix

ILE = Intermediate Lyapunov exponents:
   = Growth rate of distance between

neighboring gauge field config’s

GLE = Global Lyapunov exponents:
 = Asymptotic divergence rate of 
    neighboring gauge field config’s
 = Standard definition of LE’s
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Summary
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Different definitions of relevant entropy:
Coarse graining, Husimi transform, (ETH) dephasing
Projection, relevant density matrix, entanglement

Linear growth of coarse grained entropy determined by sum 
of Lyapunov exponents: KS entropy growth rate

What are the holographic dual descriptions?
✓ Entanglement entropy

How is coarse graining implemented in holography?
How are Lyapunov exponents manifested?
Is there an analogy to KS entropy growth rate?
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