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1.  Introduction

In the past four years there have been many interesting 
developments at the interface of holography and  

“condensed matter theory.”  These include developments 
studying transport in strongly coupled theories, novel 
superconductors, precise measures of entanglement 

entropy, and many other subjects.

I will focus on just one small piece of these developments: 
the important role played by theories with very large 

dynamical critical exponent.  Theories with          , often   
called “locally critical” quantum field theories, can naturally 
give rise to interesting non-Fermi liquids in a large N limit.  

z = ∞
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Before jumping in, let me warn you where I am heading.  
One of the classes of materials which exhibits linear 

resistivity, but is perhaps better understood or at least 
more experimentally accessible than the cuprates, is the 

heavy fermion metals:

These materials describe lattices of localized Kondo spins, 
interacting with bands of  “itinerant” (conduction) 

electrons.
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Much of my talk will involve describing the simplest 
holographic avatars of such Kondo lattice models, and 
studying if and how they admit locally quantum critical 

phases.

II.  Local quantum criticality and
the marginal Fermi liquid from holography

One class of behaviors that is seen in a variety of systems, 
most notably in the strange metallic phase of the cuprates 

and in the heavy fermion metals, can be conjecturally 
explained by  “local quantum criticality.”
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A locally critical theory has a scaling symmetry under 
which energies are rescaled, but momenta are not.  In a 

general theory with dynamical critical exponent z, 
time and space scale as:

t → λzt, x → λx

* z=1 corresponds to a theory which can have Lorentz 
symmetry; typically z=1 theories are CFTs and can be dual 

to gravity in AdS space.

* Other values of z have gravity duals characterized by the 
so-called “Lifshitz” space-times:

ds2 = −r2zdt2 + r2(dx2 + dy2) + dr2

r2
SK, Liu,

Mulligan;
c.f. Gauntlett et al

......

Maldacena;
GKPW
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* The extreme limit as          is captured by the metric:z → ∞

ds2 = −r2dt2 + dr2

r2 + dx2 + dy2

which is nothing but AdS2 × R2.

In fact, this is the geometry that emerges in the near-
horizon limit of the extremal charged black brane:

ds2 ≡ gMNdxMdxN =
r2

R2
(−fdt2 + d�x2) +

R2

r2

dr2

f

f = 1 +
Q2

r2d−2
− M

rd
, At = μ

(
1 − rd−2

0

rd−2

)
.

Chamblin,
Emparan,
Johnson,
Myers
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In fascinating work of S-S Lee; Cubrovic, Schalm and 
Zaanen; and especially Liu, McGreevy and various 

collaborators (Faulkner,  Iqbal,  Vegh), it has been shown 
that fermion probes in such black brane geometries (anti)-

holographically realize non-Fermi liquid behavior. 

* The original papers uncover the behavior by studying the 
retarded fermion propagators in a complicated bulk 

geometry, using matched asymptotic expansions.

* A simpler way of thinking about the emergence of the 
non-Fermi liquid has been emphasized in the “semi-

holographic” approach of Faulkner and Polchinski, which I’ll 
review now.
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Consider a quantum field theory whose action takes 
the schematic form:

S = Sstrong +
∑
J,J ′

∫
dt

[
c†J(iδJ,J ′∂t + μδJ,J ′ + tJ,J ′)cJ ′

]

+g
∑
J

∫
dt

[
c†JOF

J + (Hermitian conjugate)
]
.

*  There is a strongly coupled sector which we’ll assume is 
a large N theory that we can describe using gravity.

*  There is a free (lattice) fermion with a Fermi surface.

*  We deform these two theories by coupling them with 
coupling constant  “g”; c should couple to the lowest 

dimension fermionic operator in the strong sector that
is permitted by symmetries.
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In perturbation theory in g, we can turn on the interactions 
between the free fermion (with its Fermi liquid behaviour) 
and the strongly interacting sector.   For instance, there are 

a set of tree graphs that renormalize the c propagator:

+ + +  ...

Normally, we would have to include interactions coming off 
the strong       lines.  But in a large N strong sector, such 

interactions are suppressed by powers of 1/N!
O

Then, the resulting  “dressed” c propagator can be 
written purely in terms of the two-point function of

in the strongly coupled sector:O
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Gg(k, ω) ∼ 1

ω − v|k− kF (k)| − g2G(k, ω) .

G(ω) =
∫

dt eiωt〈OF
J (t)OF†

J (0)〉 .

If we make the strong dynamical assumption that the 
strongly coupled sector exhibits local quantum criticality, 

then the two-point function is constrained:

G(ω) = cΔω
2Δ−1

G( )The unitarity bound on the dimension is 1/2; for any value 
less than 1, one obtains a non-Fermi liquid, and if Delta is 

precisely 1, one has a marginal Fermi liquid with 

, G(ω) ∼ c ω log(ω) Varma et al
(1989)
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This is the essential physics of the MIT/Leiden model of 
non-Fermi liquids.  This is an advance; it is one of the few 

ways known of quantitatively studying non-Fermi liquids in 
a controllable way.  But it leaves a few natural questions.  

Most obviously:

* The value of Delta, and hence the non-Fermi liquid 
behaviour, is parametrized but not explained.  Can we write 

down full microscopic string solutions where we can 
predict Delta and see if/why it would be 1?

* Local criticality is a very surprising feature in a real 
quantum field theory, implying decoupling of spatially 

distinct points.   Can we see real field theories where this 
happens?  Can it be robust to finite N corrections or is it 

just a peculiarity of the unphysical gravity limit?
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III.  Lattice models vs AdS/RN black branes

To start on answering these questions, I am first going to 
explain a different method of obtaining AdS2 geometries in 

string theory.  This is motivated by two sets of facts:

1.  The AdS/RN black brane has various instabilities: 

a) in the presence of charged scalars, one can get a 
holographic superconductor;

b) in the presence of neutral scalars, one can get 
an emergent Lifshitz geometry;

c) in the presence of bulk charged fermions, one 
can develop  “Fermi sea-sickness”; .....

Gubser; Hartnoll,
Horowitz, Herzog

Taylor; Goldstein, SK,
Prakash, Trivedi

Hartnoll, Polchinski,
Silverstein, Tong
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[Note however that the instabilities may be a feature and 
not a bug for various reasons, as long as they occur in the 

deep IR.]

II.  Many of the models which exhibit non-Fermi liquid 
behavior, are thought to essentially be Kondo lattice 

models.

The essential physics of these materials is as follows.  There 
is a gas of itinerant or conduction electrons, interacting 

with localized spins:

c.f. Sachdev (2010)
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The dominant effects are thought to be:

i) Kondo effect, which favors hybridization of impurities 
with itinerant electrons (& renormalized Fermi liquid)

ii)  RKKY interaction between Kondo spins, via the 
conduction electrons, favoring magnetic ordering

The resulting competition results in rich phase diagrams 
which exhibit Fermi and non-Fermi liquid phases. 

In the remainder of this lecture, I will build the simplest 
analogue models in string theory.  We’ll find concrete gauge 
theory + defect systems which can realize MFL behaviour 

at large N; discuss finite N corrections; and begin a 
discussion of Fermi/non-Fermi liquid transitions. 
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I’ll briefly present the stringy brane constructions that are 
relevant, but try to constantly move back and forth to

the dual field theory Lagrangians.  The advantage of using 
full stringy constructions here, is that we actually do know 

the concrete dual field theories.

A)  The first system we’ll discuss, arises in M-theory.  It 
involves a system of N M2-branes intersecting M2’ branes 
at points; the M2’ branes form a lattice in the M2 brane 

field theory dimensions:

0 1 2 3 4 5 6 7 8 9 10

M2 x x x

M2′ x :: :: x x
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In fact, to get a two-parameter family of theories, we’ll 
consider both this setup, and its  “orbifolds” by a finite 
group, where the M2 branes sit at a conical singularity:

gk : zi = x2i+1 + ix2i+2, zi → e
i2π
k zi, i = 1...4 .

Following the work of ABJM, it has become clear that the 
M2-brane theories which arise in this way are 

supersymmetric Chern-Simons theories:
S =

∫
d3x

k

4π
Tr(A∧dA+2

3
A3)+Dμφ̄iD

μφi+iψ̄iγ
μDμψi

− 16π2

k2
(φ̄iT

a
Ri
φi)(φ̄jT

b
Rjφj)(φ̄kT

a
Rk

T b
Rk

φk)

− 4π

k
(φ̄iT

a
Ri
φi)(ψ̄jT

a
Rj

ψj)− 8π

k
(ψ̄iT

a
Ri
φi)(φ̄jT

a
Rj

ψj) .

Gaiotto, Yin;
many earlier

Monday, August 22, 2011



The gauge group is SU(N) x SU(N), and there are 
bifundamental matter fields connecting the two group 

factors, and a superpotential in the Lagrangian:

W =
2π

k
εabεȧḃTr(AaBȧAbBḃ) .

r1 r2

1 2

The effect of the M2’ defects intersecting the M2s, is as 
follows.  They add localized matter multiplets at the 

intersections.  There are charged bosons:

Q1 (N, 1), Q2(1,N)

Q̃1 (N̄ , 1), Q̃2(1, N̄)
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as well as their Fermi partners             with the same χ1,2, χ̃1,2

gauge quantum numbers.

The defect fields interact with the bulk  A,B chiral fields via 
a schematic action:

ΔS =

∫
dt

∑
i

|(A1B1−A2B2)Qi|2+|(A1B2−A2B1)Qi|2

+ |(A1B2 +A2B1)Qi|2 (6)

(+ fermionic terms).

We will momentarily see that in the gravity regime, this 
class of theories predicts marginal Fermi liquid behavior.  

But to remedy some of its clearest shortcomings, we also 
mention another class of stringy defect models.
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B)  Our second class of models arises in type IIB string 
theory.   To those of you for whom this is helpful, the brane 

configuration is:

0 1 2 3 4 5 6 7 8 9

D3 x x x x

D5(5̄) x :: :: :: x x x x x

The N D3 branes give rise to a large N maximally 
supersymmetric 4D gauge theory.  The D5 branes add 

fermionic defects localized at a lattice of points in this field 
theory.   The action of this theory is:

Sfield theory = SN=4 +

∫
dt

[
iχ†

b∂tχ
b + χ†

b

{
(A0(t,

−→
0 ))bc + vI(φI(t,

−→
0 ))bc

}
χc
]
,
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The main drawback of construction “A” that is remedied 
here, is that the defects are now purely fermionic.

A figure summarising both of our classes of models:

AdS5 or AdS4 
geometry 
dual to  
D3/M2 branes. 

. 

Probe branes 
with AdS2 worldvolume. 

tension ~ N 

Kondo 
Defects 

Note that in such models, the AdS2 geometries arise as the 
defect worldvolumes in AdS space; no RN black brane.
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In these classes of models, it is very easy to answer the 
questions left open by the MIT/Leiden group papers:

*  The value of the parameter Delta governing non-Fermi 
liquid behaviour, is determined by the scaling dimension of 
the lowest fermionic operator involving defect fields in the 
dual field theory (or equivalently, the mass of the lightest 

defect-localized fermion in the bulk geometry)

* The fate of local criticality is determined by the RG 
running of our field theories, or by whether or not an AdS2 

factor survives in the backreacted bulk geometry.
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IV.  Local criticality and marginal Fermi liquids from
the M2/M2’ system

Let us begin by studying my first candidate lattice model, 
intersecting M2 and M2’ branes in M-theory.

What would we expect the dimension of the lowest 
fermionic operator       , to which we could couple our

semi-holographic  “c” fermion, to be?
OF

* The M2-brane bulk theory of course has fermionic 
operators.   In the ABJM theory, the fermions in the A,B 
chiral supermultiplets are bi-fundamentals.  Naively they 

would have dimension          , but they aren’t gauge 
invariant.  A bulk gauge invariant, of the form:

Δ =1
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O = tr(AψB)

is gauge invariant, but would naively have               . Δ(O) = 3
2

This is of too high a dimension to produce a non-Fermi 
liquid by coupling to the semi-holographic  “c” fermion.

* So, it is more promising to look for composite gauge-
invariant fermionic operators combining defect and 

itinerant fields.   In fact, operators of the form:

(which form a four-plet after considering all such 
combinations of defect and bulk fermions) would naively 

have          and be perfect candidates for producing a 
marginal Fermi liquid, after coupling to  “c” fermions.

Δ =1

Odefect = χ1ψAχ̃2

Monday, August 22, 2011



a

At strong coupling, one can see that this logic is precisely 
borne out.  The masses of defect KK modes are related to 

scaling dimensions in the field theory via:

m2
localized = Δ(Δ− 1) .

So to compute the spectrum of scalar operators arising 
from one relevant tower of M2’ brane excitations, one can 

check brane fluctuations in the transverse compact 
dimensions of the geometry.  E.g. consider k=1:

nfe

The M2’ brane wraps an               and can fluctuate in    AdS2 × S1

six transverse directions related by an SO(6) symmetry.
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δxI(r, φ) =
∑
l

δxI,l(r)eilφ

If we let r denote the AdS2 radial direction we can perform 
a KK reduction on the circle to find the scalar modes 

which live in AdS2:

The resulting Laplace equation shows a mass spectrum

m2
l = −1

4
+

l2

4

resulting in a tower of dual scalar operators with

Δl =
1

2
+

l

2
.

The lowest bosonic operator in this tower has dimension 
1/2; its fermionic superpartners have dimension 1 and the 
right properties to be the operators we identified using 

weakly coupled intuition.
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So we’ve succeeded in the goal of giving examples of 
microscopic marginal Fermi liquids, in the leading large N 

approximation.

(I have glossed over the fact that because of the bosonic defect modes, we actually 
have to use global symmetries to guarantee that “c” couples to these fermionic 

operators; there is a lower dimension fermionic operator with different symmetry 
properties in another KK tower.  This would not happen in the D2-D6 lattice 

system, presumably).

V.   Comments on finite N effects

We used large N in two crucial ways in the semi-
holographic story; to see that there is a locally critical fixed 
point (i.e. AdS2 geometries of the defects), and to compute 

the  “c” correlation functions after dressing them with 
interactions with the large N sector.
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What would change at finite values of N?

* In all of these kinds of lattice systems, if the lattice spacing
is “L”, one expects the free energy per unit area to take a 

schematic form:

(with a=2, b=1 in a standard gauge theory with the kind of 
field content we wrote down).

So one should expect backreaction of the lattice to 
become important at an energy scale that goes like some 

inverse power of N   (          in this case).N−1/2

Equivalently, as one scales to the IR, one includes more and 
more lattice points, till backreaction becomes relevant.

F = NaT 3 + N b T
L2
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Here I just make some elementary remarks about what this 
backreaction does.

The most basic question is: does local quantum criticality 
survive?  In the gravity regime, this becomes the question: is 
there an exact solution including the lattice of M2’ branes 

and an AdS2 factor in the infrared?

Let’s think about this loosely, using an energetics argument.
We are looking for a stable solution of the form: 

AdS2 × T 2 × X

(where we compactified the field theory spatial dimensions 
for convenience).  Call the radii of the three factors in the 

geometry A, T and S.   The effective action for these radions 
reduced to 1+1 dimensions is of rough form:
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S =

∫
d2x

(
−T 2S7 +A2T 2S5 −N ′

2A
2S − N2

2A
2T 2

S7

)
.

(17)

The four terms come from the AdS and internal 
curvatures; the M2’ brane tensions; and the 7-form flux 
from the M2 branes.  We have smeared the M2’ branes, 

averaging their energy over the internal directions.

There is an extremum of this schematic action, with:

A ∼ S ∼ N
1/6
2 , T ∼ N

′1/2
2 /N

1/3
2 .

Physically, what’s happening is that the M2’ branes provide a
force opposing the contraction of the “T2” directions 

(which would contract in the AdS4 solution), helping to 
drive the system to a fixed point with local criticality.
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Now, this is correct logic, but in our supersymmetric 
microscopic system, we did NOT smear the M2’ branes 

over the internal dimensions, but rather wrapped them on 
a preferred circle.  To more accurately think about 

energetics, we should include a radion for the circle, 
thinking of the sphere as a Hopf fibration.

Including this one additional mode, one finds no 
extremum; whatever backreaction does, there is no AdS2 
solution with radii in the regime where gravity is reliable.

Brane models better represented by the theory with an 
extremum can be constructed but are non-

supersymmetric.  One would have to study them in much 
more detail to be sure there aren’t other instabilities.
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One can also study the backreaction directly in the field 
theory.  The basic issue is that defects will “talk to each 

other” via bulk exchange; integrating out bulk modes would
be expected to induce gradients in the lattice action, 

destroying local criticality.

For the special case of fermionic defects coupled via 
Chern-Simons gauge fields, things aren’t as grim as they 

could be.  E.g. consider the theory with action
∫

dt d2z [A0(∂zAz̄ − ∂z̄Az) − Az(∂0Az̄ − ∂z̄A0)

+Az̄(∂0Az − ∂zA0)] +
∑

n

δ(2)(z − zn)χ†
nA0χn

Monday, August 22, 2011



Integrating out the gauge fields at tree level does not 
induce any interactions between the defect fermions.  

Similarly the bulk A,B fields of the ABJM model couple to 
the defects quadratically, and do not induce couplings at 

tree-level.  Especially in the k=1 case where there is a lot of 
SUSY, corrections may be very highly constrained.

Speaking more generally, there IS a good reason to
to think that local criticality will never be absolutely stable 

down to zero temperature.  The density of states in a 
locally critical theory takes the form:

ρ(E) = Aδ(E) + B/E p
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* The delta function term would be present even in a 
trivial defect theory, and reflects the T=0 ground 

state degeneracy.

* The second term would contribute a divergence in 
the number of states as one approaches E=0; this must 

always be cut off in an exact treatment.

Happily, the competition between the constant entropy and 
the log divergence doesn’t kick in until exponentially low 
energy scales; this in principle allows for the existence of 
natural models which work down to very low energies.
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Thus, although backreaction becomes important in our 
lattice models at some scale which is power law in 1/N, 

in principle one should be able to construct models 
which remain critical after including backreaction down 

to much lower scales.

* Final note on backreaction in class B (D3/D5 case) :

In the case of M stacks of k(i) D5s wrapping different polar 
angles in the 5-sphere all at one point in the field theory 
spatial dimensions, one can solve geometrically for the 

backreacted space-time.

Harrison, SK, Torroba to appear;
D’Hoker, Estes, Gutperle
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The theory undergoes a geometric transition:  each D5 
stack “squishes” a four-sphere in the five-sphere, resulting 

in a space-time with M+1 five-spheres and M three-
spheres.

The final solution is an                         fibrationAdS2 × S2 × S4

over a Riemann surface of genus g.  It mirrors the 
expected Kondo flow in the dual field theory,  and 
exhibits a geometrization of the Affleck-Ludwig  “g-

function.”
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VI.   Models with purely fermionic defects and FL/NFL 
transitions 

Now, let’s move on to illustrate something new in the class 
of models “B,” coming from type IIB string theory, with 

purely fermionic defects.  Recall in the simplest microscopic 
setup there:

Sfield theory = SN=4 +

∫
dt

[
iχ†

b∂tχ
b + χ†

b

{
(A0(t,

−→
0 ))bc + vI(φI(t,

−→
0 ))bc

}
χc
]
,

Take away lesson:  backreaction becomes important in 
the lattice models at some scale which is power law in 
1/N, but in principle one should be able to construct 

models that remain critical down to exponentially lower 
scales.
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In the micoscopic string theory, the defect fermions chi (in 
the fundamental of SU(N)) come from D5-brane defects 
stretching down AdS2 slices of AdS5, and wrapping a four-

sphere in the  “extra” five-sphere.

We could instead consider a bipartite lattice of D5s and 
anti-D5s, giving fundamentals and anti-fundamentals of 

SU(N) at neighboring lattice sites:
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Now, the free-energy of a neighboring D5/anti-D5 pair 
both stretching straight down to the horizon, is clearly just 

twice the free-energy of a single D5 (at leading order in 
large N).  

However, supersymmetry is broken in this background; and 
we expect integrating out the bulk SYM fields to introduce 

interactions between the neighboring spins.  A new 
kinematically possible configuration:
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may then become thermodynamically favorable, depending 
on the temperature.

Let us call the separation between the brane/anti-brane 
pair       .  Then a simple computation reveals that for

large       (relative to the scale set by T, i.e. the location of 
the horizon) the “straight down” configuration is preferred.
For smaller       , two reconnected configurations appear - 

one a local maximum of F,  and one the true minimum:

Δx

Δx

Δx
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The phase transition occurs (numerically) at:

r+Δx

L2
≈ 0.7, where

r+
L2 = πT → Tc ∼ 2

Δx .

The dimerized phase dominates at low temperature, when 
intuitively, the branes can save tension energy by 

reconnecting rather than stretching all the way to the 
distant horizon.

(We note that we could modify this to a T=0 phase 
transition at finite charge density, by instead varying the 

chemical potential in the D3 field theory.  At large charge, 
the horizon also moves out towards the boundary.)
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Now, let us consider the behaviour of two-point functions 
for a semi-holographic fermion, coupled to the large N 

CFT (with defects) that we’ve just been discussing; i.e., we 
are replacing the M2/M2’ system from the first 2/3 of this 

talk, with the D3/D5 system.  Let us call the lowest-
dimension fermionic operator arising on the defects, 
OF

J .  Consider its behaviour in the two phases:

a)  In the phase: The operator lives on an           slice 
of the bulk geometry.  The two-point 
functions are constrained to behave as:∫

dteiωt〈OF
J (t)OF †

J ′ (0)〉 = iδJ,J ′G(ω),
2Δ 1G(ω) ∼ ω2Δ−1

AdS2
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b) In the phase: The submanifold wrapped by the probes
deviates from          in the IR.  The

resulting two-point functions are governed 
by a gap:

AdS2

lim
ω→0

∫
dteiωt〈OF

J (t)OF †
J ′ (0)〉 = iAJ,J ′ .

Consequently, the behaviour of the dressed c-fermion is 
dramatically different in the a) and b) phases of our 

holographic Kondo lattice model:

a) phase can generically yield NFL behaviour.
b) phase generically yields Fermi liquid with expanded 
Fermi surface (relative to free c fermion).
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Or in pictures, once again:

Fermi surface reorganization: 

25 

local cr itical 
fermions (AdS2) 

gapped spectrum 

non-Fermi liquid 
F ermi liquid 

 

after mixing with 
itinerant fermions. 
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Several important notes and caveats:

i.  In the model I described in detail, the transition occurs as 
a function of T.  The NFL behaviour only occurs for 

frequency large compared to T, which would mean we 
would need to tune parameters so the transition 

temperature is low compared to the Fermi momentum.
We can do this in the model, but it is annoying. 

ii.  In the literal model coming out of the D3/D5 system, as 
opposed to D5 probes of other known AdS/CFT dual pairs,

the lowest dimension attainable for a fermionic operator 
on the defect is 

Δ(O) = Δ(χ†
aλabχb) = 3

2
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This would give non-Fermi liquid behaviour of the decay 
width, but not a vanishing quasiparticle residue.  To get 

vanishing quasiparticle residue from the  “top down,” one 
would have to study D5 embeddings in more general AdS 

solutions.

iii.  A basic limitation of this entire approach is the need for 
a large N bath which strongly renormalizes the properties 

of the UV Fermi liquid to make an IR non-Fermi liquid.
I am not sure how to circumvent this limitation with ANY 
of the approaches currently under discussion using string/

gravity techniques.

i and ii are not basic problems (indeed ii is circumvented 
in the M2/M2’ model I described); iii seems to me the 

point which requires serious thought.
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* One of very few controlled approaches to construct 
novel non-Fermi liquid phases which are seen increasingly 
cleanly in experiment; can we beat them to seeing some 

striking new phenomena, or at least give theoretically 
controlled models of conjectured novel phases?

* Large N  “hidden sector”  that renormalises the electrons 
is the rather embarassing crutch in use.  Questions of finite 

N effects need to come to the fore if this subject is to 
advance further.

Summary (my view of holographic approach to NFLs):

* More parochially: can we find a soluble Kondo lattice 
model?  This would be of striking interest to a good 

fraction of the field-theoretic CM community.
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