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Friction and Every Day Life

 Allows us to walk and drive

 Holds thread, nails, screws, bolts, bricks, … 

Determines how things feel, texture of food

Wastes energy       ~20% in car enginegy g
 Produces wear  abrades material

 destroys lubricants

Economic cost of poor friction control
more than 6% of GNP > $400 billion/year

Answering Questions About Friction Complicated
Friction determined by processes on a wide range of scales

• Surfaces rough on nm to mm scales 
Area and geometry of contacting regions determined by 
roughness and long-range elastic and plastic deformation.

• Friction comes from interactions between atoms in 
contacting regions → sensitive to exact chemical makeup, 
impurities, surface coatings, … that are often unknown

Computer simulations allow controlled “experiments”   
Explore trends, discover unanticipated mechanisms

No general theory for behavior far from equilibrium
Equilibrium  stable state minimizes free energy
Far from equilibrium  must solve dynamical equations

Static friction Fs

 minimum force needed to initiate sliding.
Kinetic friction Fk(v) 

 force to keep sliding at velocity v.
Typically, Fk(v) varies only as log(v) and Fs>Fk(v) at low v

 Load

F

Amontons’ Laws (1699): 

Typical measurement of friction
v

 Friction  load  constant =F/Load.
 Friction force independent of apparent contact area Aapp.
But: Amontons coated all surfaces with pork fat

F Aapp for soft, flat solids, polymers
 often changes with load  friction for load ≤ 0
Friction depends on history (rate-state models)
Laws violated in nanoscale experiments & simulations
 solids slide like fluids, fluids stick like solids

Many Systems Have Friction with Load ≤ 0
Geckos, tape, putty, … stick on walls or ceilings

Common view since mid 1900’s
Surfaces rough on many length scales

and usually find Areal << A0

Measurements and theory  Areal  Load in many cases
 get Amontons’ laws if constant shear stress shear

friction = A l  h  Load

Areal

A0

Is Friction Proportional to Real Area?

friction  Areal shear Load 
Also explains many exceptions to Amontons’ laws

Adhesion Areal nonzero at zero load, still have friction
Friction A0 for soft materials because Areal ≈A0

First describe recent progress in continuum theory for Areal

then difficulty in defining Areal and explaining shear at 
atomic scale

Contact area  Load (Dieterich & Kilgore)
Applied normal stress = Load/Aapp  
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Height variation h over length ℓ  h ℓ H 0<H<1
Average slope h/ℓ  ℓ-(1-H)    goes to zero as ℓ increases 

 diverges as ℓ decreases

Surfaces Often Rough on Many Scales  Self-Affine

H=0.5
Mount Everest

Hyun, Pei, Molinari, & Robbins, Phys. Rev. E70, 026117, ‘04;
J. Mech. Phys. Sol. 53, 2385, ’05; Trib Int. 40, 1413, ‘07

Clay 10x10m 

www.phys.ntnu.no

Fractured and polished surfaces self-affine 
over large range of scales H~0.6-0.8

Find contact area using finite-element 
continuum code for wide range of H, etc.

Assume area  load  (N=load)
Only material property is

contact modulus E’=E/(1-2)
N/(Areal E’) is dimensionless
Roughness only enters through dimensionless measure
 rms slope =|h|1/2  sensitive to small scales

Areal

A0

Dimensional Analysis

p | |
 independent of hrms= rms roughness, system size

N/(Areal E’) = a constant
Numerical solution: 1.8 <  < 2.2 for all H, , … 
Very different models, similar analytic predictions for 

Bearing area – Greenwood-Williamson =(2)1/2≈2.5
Persson’s scaling theory     =(8/)1/2≈1.6

Very different 
surface 
roughness 
profiles give 
same κ=2.0

Results here 
are for 
different 
synthetic and 
experimental 
surfaces at 
A/A0~0.1

Models Predict Very Different Contact Geometry 
For Same Rough Surface and Areal 

Ideal Elastic Perfectly Plastic      Bearing Area Model
 >2, Df ≈1.6            ≈ 2, Df ≈1.8           =(2-H/2), Df=2

Power law distribution of connected areas ac: P(ac)  ac
-

Connected regions are fractal ac rDf

Inconsistent with bearing area model →

Most area → small ac Most area → large ac

Contact and Pressure Correlation Functions
Cc(r-r’)=< c(r)c(r’)>r’ where c(r)=1 in contacts, 0 otherwise
Cp(r-r’)=< p(r)p(r’)>r’ where p(r) is normal pressure

Bearing area & Greenwood-Williamson C (q)~q-(2+H)

Full numerical and Persson C(q)~q-(1+H)   q = wavevector
Exponent crucial to stiffness, thermal & electrical conductance 
conductivity

Campañá Müser &

~
~

H=0.3

0.5
Cc – closed symbols
C open symbols

~
~ Campañá, Müser & 

Robbins, J. Phys. 
Cond. Matt. 20, 
354013 (2008)

Ramisetti, Campañá, 
Anciaux, Molinari, 
Müser, Robbins, J. 
Phys. Cond. Matt. 
23, 215004 (2011)

0.8
Cp –open symbols

Lines have slope 1+H

What Happens With Atoms?
2D hybrid model easily treats volumes with ~108 atoms

At edge of overlap region 
MD and FEM 
displacements provide 
BC’s for each other

MD->FEMMD

FEM->MD

MD FEM

overlapFEM

Luan & MOR, Tribol. Lett., 36, 1 (‘09), Luan, Hyun,  Molinari, Bernstein, MOR PRE74, 046710 (‘06) 
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Atomic Simulations, Same Large Scale Correlations

Pressure correlation 
function C(q) scales 
as power of q
GW: C(q) ~ q-(1+H)

Persson: C(q) ~ q-H

Also consistent with 

Results for L=4096 & 8192 
at different loads collapse

q-H

Persson in 3D 
simulations

BUT Contact area sensitive to structure at atomic scale, 
discrete surface slopes, ratio of lattice constants, etc..
Find larger Areal,   ~ 15 in 2D,  up to 4 in 3D 

GW

Plasticity Irrelevant as System Grows
Continuum  plasticity for 
>y/E’ < 0.1-0.3

No plasticity at =0.68 for LJ 
For =1.23 find  LcN, but 
Lc/N converges as L rises

Scale dependent surface 
flattening dominates, W

/A
0E

’
N

/A
0E

’

=1.23

=0.68

L

g ,
dislocations inhibited by 
lowered slope

Red atoms have new neighbors
Scale of flattening << L as L increases
Response approaches elastic behavior

~15

Dimensional Analysis of Contact Stiffness
Contacts often dominate macroscopic stiffness → jet engine mounts
Electrical and thermal conductance scale like stiffness 
Normal stiffness kN≡-dN/du with u=mean surface separation
Tangential stiffness kT=-dF/dx with x=lateral disp.
Dimensional analysis kN=N/hrms with  a constant and

hrms=rms height  sensitive to system size
Integrate -dN/du=N/h0    N = cA0E’ exp(-u/hrms) 
Continuum predicts lateral stiffness kT = kN 2(1-)/(2-)  if isotropic
Experiment: 
Lateral - Berthoud, Baumberger, Proc. R. Soc. Lond. A454, 1615 ‘98. 
Normal - Benz, Rosenberg, Kramer, Israelachvili, J. Chem. Phys. ‘06.  

Lorenz and Persson. J. Phys. Condens. Matter 21, 015003  ’09.
Theory: Pei, Hyun, Molinari, Robbins, JMPS 53, 2385 (2005).

Persson, Phys. Rev. Lett. 99, 125502 (2007), …
3D simulations of Lennard-Jones atoms (up to 5•107)
Akarapu, Sharp, Robbins PRL 106, 001504301 (2011)

Find FN = cA0E’ exp(-u/hrms) with =0.48
For all H, system size, elastic continuum &Lennard-Jones

Load Varies Exponentially With Separation u

’]

elastic

(u0-u)/hrms

ln
[N

/A
0E

Lennard-Jones

Predict and measure (kN /A0E’ ) (hrms/ = ()-1 Areal/A0

Normal Stiffness  Load Area

k N
h r

m
s/A

0E
’ Normal stiffness

Slope= 1/

Results for kN with 
different H, L, xtal
structure collapse

Tangential stiffness 
~100 times smaller

Areal/A0

k T
h r

m
s/A

0E
’ Tangential stiffness

substrate 
only total

Contribution from 
substrate ~kN

Lateral motion 
between atoms on 
opposing interfaces 
dominates total kT !
kT varies with xtal
surface, atomic 
spacing

Pressure distribution for sphere on flat

Bent crystal      Amorphous  Stepped Crystal

Atomic scale roughness qualitatively changes pressure, yield
Bent crystal agrees with Hertz/JKR, more realistic tips do not

Pressure without  
adhesion

Rnm
100

Pressure with 
adhesion

~107 atoms
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Comparison to Hertz Theory for Sphere on Flat

Fits of δ to Hertz give good
E* and R (10%)

Contact radius a is shifted
several σ away from Hertz, 
leading to 100% error for 
small contact radius.

Hertz
Friction varies by factor of 200 
Commens.:   FN, =0.7 
Incomm.:      F~0
Amorphous:  F A, and small

Lateral stiffness varies 10 fold
due to atomic scale lateral
motion at interface.
Agrees with Hertz if don’t
allow sliding at interface.
Luan & Robbins, Nature 435, 929 (2005)

Does Ratio F/k2 Give Shear Stress?
Continuum: F=effr2, k=8Gr
→ eff = (F/k2) (64G2/)
Find eff relatively constant,
but 10-100 times true 
and  not constant for stepped

Similar curves in experiments, 
including rise at small loadsHertz including rise at small loads

→ Not reliable way of 
estimating shear stress under 
general conditions.
Main difficulty is that k is 
dominated by interface which 
is not included in continuum 
expression.

Adhesive

Clean, flat surfaces expected to have zero static friction
Hirano & Shinjo – Contacting crystals typically incommensurate, 
No common period → lateral force averages to zero, Fs=0

Consistent with many experiments & simulations
Fs=0 for incommensurate monolayers on substrate (Krim et al.)

Solids more slippery than fluid of same element 
Fs~0 for misaligned mica, graphite, MoS2, amorphous antimony

(Hirano et al. ‘91, Dienwiebel et al. ‘04, Martin et al., Dietzel et al. ‘08)

Nanoscale Studies of Flat Surfaces

( , , , )

0º 8.2º

commensurate incommensurate

 bare surfaces    s vanishes as 1/area1/2

 adsorbed layer s =t0+P, independent of area

Amorphous walls

Molecules adsorbed from air, wear debris, elastomer segments,
and other mobile “third bodies” lock surfaces together, Fs ≠ 0 

Find s=0 +  p  Fs=0 Areal +  N     (He, Müser, Robbins, Science ‘99)

 can explain Amontons’s laws, exceptions with adhesion, rate-state
BUT not a constant shear

 independent of many parameters not controlled in experiment

“Dirt” Leads to Static Friction

Mica, graphite, MoS2, antimony show higher friction, less variability 
when exposed to air and adsorbed molecules
Nanometer fluid films act like solids in surface force apparatus 
(Israelachvili, Granick, Klein)

 indep. of coverage, chain length (n6),  w or rc

 increases with d/w  “rougher” surface

Effect of Potential

default:
w=1
w=1
d=1 2

-3  40MPa

d=1.2
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If pressure high enough  hard sphere limit
Repulsive force balances pressure

F ~ P/c ~ 48 (w /w )(w /r)13  where c=coverage
 r ~ w (c w /P w )1/13 

Effective hard-sphere radius: insensitive to c, w  , P
almost linear in w 

S f f l t h d d d /

Geometric Explanation

Surface of closest approach depends on d /w 

 maximum slope as in geometric model
 larger d/ w, steeper slope, bigger 

Analytic theory: Müser, Wenning, Robbins PRL 86, 1295, ‘01

d
w

w

Adsorbed layers give F load for AFM tips and 
decrease variability of friction with tip geometry

n 
(


)

■ amorphous with 
adsorbed layer

■ incommens. with

Load ()

F
ri

ct
io

n adsorbed layer

○ bare amorphous

○ bare incommens.

 ~5pN

Monolayer  Huge Increase in Contact Area
Monolayer : much bigger contact

much smaller normal stiffness 
 like very compliant layer

(Cheng and Robbins, PRE 2010)

90% of load and friction come 
f 10% f t ti t

monolayer

from 10% of contacting atoms

bare

Short chains

Chains wet substrate, repel tip

Attraction at large separations
 Entire surface interacts: Ac =A0

Common alternative 
 Contact = Repulsive interaction

Separation ~ atomic diameter
First idea – Ac = Aa * Nc

What Is Contact at Atomic Scales?
E

r

repulsion

rc

Aa = Area per atom
Nc = mean # contacting atoms at any instant
Mo et al. (Nature 2009):  found Ac~Load~friction
Concluded could explain with continuum theory
for rough solid

Continuum theory assumes T=0
 How important are thermal fluctuations?

repulsion

Simplest Geometry: Parallel Planar Surfaces
Continuum  full contact at any normal load

Cheng & Robbins, Tribology Letters 39, 329 (2010)

L

elasticelastic
b t tb t t

rigid block

commensurate incommensurate

amorphous

substratesubstrate
fcc xtalfcc xtal

L  

























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LJ 4
rr

rV


   2
0spring 2

1
rrkrV 

Cut off at r>rc

if nonadhesive

Contact Area  Load
T=Tm/4      N/A0E* = 5.5*10-4

pressure field (snapshot)

Although surfaces flat, small fraction contact at any instant
N/A0E* ~ normal strain, bulk strain at yield ~10-4 to 10-2

Ac/A0= cAN/A0E*   with cA~20 [Tm/T]1/2  , Tm=melting T
while rough surface cA=

N/A0E*
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Theoretical Model
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

 0 dzzfzpMNLoad:

Spring keff binding atom to
substrate + wall potential Uw

U(z)

0 5*k *( + )2

E
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


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00
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Area:

z

0.5*keff*(z+z0)2

Uw(z)

-z0 atoms repel 

ΔE

If  Ac/A0<<1  E/kBT << 1
Linearize U  analytic sol.

Find Ac(0)  N
Exponential distribution
of instantaneous forces

Exponential Distribution of Instantaneous Force

incommensuratecommensurate

P(
f/

<
f>

)

P(
f/

<
f>

)

T/Tm = 1/4

nonadhesive

L/A0E* =

2*10-5

5.5*10-4

7*10-3

amorphous
T/Tm = 10-4

nonadhesive

L/A0E* =7*10-3

T/Tm = 1/4

adhesive

L/A0E* =7*10-3

At T/Tm>0.05, P(f/<f>)=exp[-f/<f>]

f/<f>

P(
f/

<
f>

)

f/<f>

f/<f>

adhesive

amorphous plane

T/Tm=1/4

nonadhesive

T/Tm=1/4

T/Tm=1/10

f
c/


f
c/


Mean Force and Time in Contact

Universal dependence of fc on pc

fc  pc leads to  L Ac(0)

pc ~ 1 → fc ~ 5-10 → p/E* ~ 0.1-0.2 
>> macroscopic hardness of 10-4- 10-2

 

   









0

0

d

d

zzfzpf

zzpp

c

cprobability in contact:

time-averaged force:

nonadhesive

f
c/


pc

pc
pc

Conclusions for Thermal Effects
 Even for simplest geometry, continuum concept of contact 

hard to extend to nanometer scale

 Thermal fluctuations lead to strong fluctuations in 
instantaneous contact force  pure exponential

 Universal relation between contact time and mean force

 Force is not repulsive more than 50% of time until mean 
pressure is comparable to ideal hardnesspressure is comparable to ideal hardness

 Nonadhesive: Ac(0)/A0 = cA N/E*A0 with cA~20 [Tm/T]0.5

From Lindemann criteria and keff/3 ~ E*

 Only unambiguous definition is time averaged force for 
adhesive case, but requires p~hardness for full contact

 Similar results for spherical tip on flat
Ac(0) << Hertz, linear at small load, …

 Must also coarse-grain in space to approach continuum

Conclusions
• Measured macroscopic friction is a single number, but 

reflects processes on a wide range of scales.
• Continuum calculations show area proportional to load 

but do not explain shear stress shear that controls friction
• Normal stiffness kN consistent with continuum theory, 

but atom scale effects greatly reduce tangential stiffness kT

• Clean surfaces generally have no friction, small kTg y , T
Adding adsorbed molecules gives s=0+p ≠ const.

• Rough surfaces: Areal difficult to define at atomic scale
Sensitive to atomic scale geometry, interactions, …

• Thermal fluctuations → pressures ~ ideal yield stress 
→atoms usually out of contact Ac(0)/A0 = cA N/E*A0
with cA~20 [Tm/T]0.5 from Lindemann criteria, keff/3 ~ E*

• Much left to do to understand how roughness, plasticity, 
temperature and atomic interactions determine shear


