

Au NPs on Flat Substrates using Dynamic AFM"

Samer DARWICH¹, Karine MOUGIN¹, Hendrick HOELSHER², Enrico GNECCO³, and Hamidou HAIDARA¹

 ¹ Institut de sciences des matériaux de Mulhouse, 15 RUE JEAN STARCKY, 6
 8057 MULHOUSE, FRANCE.
 ² Institut für Mikrostrukturtechnik, Universität Karlsruhe (TH), Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen, Germany.
 IMDEA Nanoscience, Avda. Fco. Tomás y Valiente, 7, Facultad de Ciencias, Módulo C-IX 3^a planta Ciudad Universitaria de Cantoblanco, 28049 Madrid, spain

Nanoparticules deposited on materials surface...

... self-assembled NPs ...

« Fabricating Superhydrophilic Wool Fabrics » Dong Chen, Longfei Tan, Huiyu Liu, Junyan Hu, Yi Li and Fangqiong Tang
 Langmuir, vol. 26, (2010), 4675–4679

« Microsensors in Dynamic Backgrounds: Toward Real-Time Breath Monitoring »
K.D. Benkstein, B. Raman, C.B. Montgomery, C.J. Martinez and S. Semancik
Sensors Journal IEEE, vol. 10, (2010), 137-144

... or isolated ...

... to create novel physical or mechanical properties

or improved old ones...

To fabricate highly hydrophobic coatings

Anti-Icing Superhydrophobic Coatings

§ Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521

Langmuir, 2009, 25 (21), pp 12444-12448

Anti-Icing Superhydrophobic Coating

Rechercher

Parcourir Ajouter un

35.7

h

To fabricate superhydrophilic coatings

antifogging antifogging antifogging antifogging antifogging antifogging antifogging antifogging Hierarchically structured superhydrophilic coatings fabricated by self-

assembling raspberry-like silica nanospheres Xiangmei Liu and Junhui He Journal of Colloid and Interface Science 314,(1), pp341-345, 2007

Ti O2 nanoparticles

For self- cleaning functional and environmentally friendly coatings

Photocatalyse: décomposition de la contamination

Super-hydrophilie photo-induite: rinçage de la contamination résiduelle

Ti O2 nanoparticles

• anti-fogging, Air conditionning,...

http://www.toto.co.jp

• For self-depolluting systems

• For self- sterilisable coatings

TiO₂ layer

Catheter substrate

TiO2 photocatalysis and related surface phenomena

Akira Fujishima, Xintong Zhang and Donald A. Tryk *Surface Science Reports*, 63 (12), pp 515-582, **2008**

Fig. 6.7. Usage of TiO_2 -based photocatalytic material on roadway surfaces to convert nitrogen oxides (NO_x) to nitrate: (left) application of the coating; and (right) finished roadway, with the coated surface showing a lighter color (courtesy of Fujita Road Construction Co., Ltd.).

Ag nanoparticules d'Ag for antimicrobial agent coatings

Silver nanoparticles as antimicrobial agent: a case study on *E. coli* as a model for Gram-negative bacteria Ivan Sondiand Branka Salopek-Sondi *Journal of Colloid and Interface Science*, 275 (1), pp177-182, **2004**

Ag nanoparticules for nanotextile coatings

http://nanotextiles.human.cornell.edu/research.htm

Preparation and characterization of polypropylene/silver nanocomposite fibers

Sang Young Yeo, Sung Hoon Jeong *Polymer International*, 52 (7), pp 1053–1057, 2003

Antibacterial Effect of Silver Nanoparticles Produced by Fungal Process on Textile Fabrics and Their Effluent Treatment

Durán, Nelson; Marcato, Priscyla D.; De Souza, Gabriel I.H.; Alves, Oswaldo L.; Esposito, ElisaJournal of Biomedical Nanotechnology, 3 (2), pp. 203-208, 2007

air purification, thermal insulation, self cleaning

Stability and ageing of NPs based materials?

Environmental parameters affecting NPs arrangement:

-Temperature -Humidity

The organization of NPs has a direct impact on their interfacial properties

Final drying patterns of nanocolloids suspensions of varying size on SiO_2 , at different drying temperatures. For (15 nm; T > 45°C) and (25, 35 nm; T > 20°C), o nly featureless particle deposits are formed in the final drying spot; the occurrence of the structures is zero for these conditions.

Stability and ageing of NPs based materials?

Mechanism underlying the destabilization of the assembly of NPs

- Main forces driving the disassembly of NPs in complex structures

-Which kind of NPs shall we use to create new NPs based materials (nature, size, shape, Nps coating.....)?

Investigation at nanoscale by AFM..

Strategies of Manipulation

- Scanning Tunneling Microscopy

IS2M

R. Lüthi et al., "Sled-type motion on the nanometer scale: Determination of dissipation and cohesive energy of C_{60} ", Science 266 (1994) 1979

M.T. Cuberes, R.R. Schlitter, and J.K. Gimzewski, "Room-Temperature repositioning of individual C60 molecules at Cu steps: Operation of a molecular counting device" Appl. Phys. Lett. 69 (1996) 3016.

-Surface Force Microscope in dynamic Mode

C. Ritter, Langmuir 2002, 18, 7798-7803

Manipulation of Gold Nanoparticles

Nanomanipulation system

Spherical nanocolloidal gold particles

Elghanian, R.; Storhoff, J.J.; Mucic, R.C.; Letsinger, R.L.; Mirkin, C.A. "Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles" *Science* **1997**, **277**,**1078**.

Marie-Christine, D.; Didier, A. "Gold nanoparticles: assembly, supramolecular

chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology" Chemical events 2004, 104, 255 and Onlerence on trends in Nanotribology Trieste – Italy, 12-16 September 2011" references therein

Cubooctahedral Nanocolloidal gold particles

Increase of L/D Ratio

Brown, K. R. *J. Chem. Mater. 2000, 12, 306.* Busbee, B.D.; *Advanced Materials 2003, 15, 414.* Nikoobakht, B; El-Sayed, M. A. *Chem.Mater. 2003, 15,* 1957.

Other Nanocolloidal gold particles

Nanostar

Nanotriangle

Functionalization of gold nanoparticles

Terminal functionality

Assembly of nanoparticles 1-D, 2D or 3 Dimension

• Drying –mediated assembly or evaporation – induced assembly

Simplest method of assembling NPs on a surface

- Chemically assisted assembly
 Powerful approach to create highly ordered specific nanoparticles patterns
- Topographycally assisted assembly
- Mechanically assisted assembly manipulation

Drying-mediated Assembly of gold nanoparticles

1. Immersion of Samples into the soluton

@ different temperatures Ph-d thesis Kyumin Lee –EPFL Kulik 2008

3. Spray coating

Multimode: VEECO Nanoscope V

the power dissipation

$$P_{dis} = k\pi f_0 \left(A_d A \sin \varphi - \frac{A^2}{Q} \right)$$

oscillation amplitude frequency phase shift drive amplitude

20

IS**2**M

Manipulation parameters

Manipulation of gold nanoparticles by AFM in Tapping Mode

Height Signal

slow scan direction

Threshold energy to manipulate a particle? Sliding or rolling?

Typical trajectories of bare gold nanoparticles (20 nm diameter)

a. low drive amplitude, b. high drive amplitude; scan size: 5µm

Evolution of the logarithm of the dissipated power normalized by the radius (R) of NPs

Humidity Rate effect ?

Humidity Rate (%)	33	43	53
As-synthesized Au NPs on SiO ₂	movement	fixed	fixed 1
CH3 coated Au NPs on SiO ₂	movement	movement	movement ²
As-synthesized Au NPs on Si-CH ₃	movement	movement	movement 3

IS2M

Environment - Humidity Rate

Ellipsometry results

≠ substrate chemistry and ≠ Relative humidity

Humidity Rate (%)	≤ 33	≥ 53
Condensed Water thickness on SiO ₂	1nm <	130 nm
on Si-CH ₃	1nm <	1nm <
		Hydrophilic tip

Friction force F_f = threshold lateral force required to slide the contact between two surfaces

$$F_f \sim \mu(F_{ext} + F_{adh} + F_c)$$

- -F_f represent the friction force,
- -F_{ext} corresponds to the applied external load,
- F_{adh} is the intermolecular adhesion force,
- F_c is the capillary condensation force when its exists

- and, $\boldsymbol{\mu}$ is the friction coefficient between surfaces.

Hydrophilic NP - Partially hydrophilic substrate

Evolution of the threshold energy dissipation (eV) to move citrate coated NPs (hydrophilic) on SiO₂ (partially hydrophilic) vs the relative humidity. At 2 % of RH the pressure was 10 mbar and it is the reference value to move these NPs on such substrates. Schemes of the system configuration (hydrophilic particle/ partially hydrophilic substrate/ partially hydrophilic tip) at different values of relative humidity. a) RH at 2 % (P=10 mbar), b) RH (10 to 40 %) (P= 10³ mbar) and c) RH at 80 % (P= 10³ mbar).

Hydrophilic NP - Partially hydrophilic substrate

TIP Oscillation (Tap) \rightarrow Energy \rightarrow Dissipation in Water \rightarrow Fixed NP

capillary bridging force

$\textbf{F_{c}} \sim \textbf{2pR}_{T} \gamma_{L} (\textbf{cos} \theta_{SL} + \textbf{cos} \theta_{TL})$

where R_T is the tip radius, θ_{SL} and θ_{TL} are respectively the static contact angles of the liquid on substrate and tip, a nd γ_L is the liquid (water) surface tension

3

Hydrophilic NP - Hydrophobic substrate

Evolution of the threshold energy dissipation (eV) to move citrate coated NPs (hydrophilic) on silicon wafer coated with $-CH_3$ terminated groups (hydrophobic coating) vs the relative humidity of the manipulation chamber

Schemes of the system configuration (hydrophilic particle/ hydrophobic substrate/ partially hydrophilic tip) at different values of relative humidity.

- a) RH at 2 % (P=10 mbar), b) RH (10 to 80 %) (P= 10^3 mbar).
- b) c) AFM phase image in Tapping mode, during
- c) the manipulation of NP; the black line corresponds
- d) to the trajectory of the particle (slow scan axis down).

Environment - Humidity Rate

Hydrophilic NP - Hydrophobic substrate

IS**2**M

3

Schemes of the system configuration (hydrophilic particle/ hydrophobic substrate/ partially hydrophilic tip) at 80 % of RH using low A_{set} and drive amplitude (tapping parameters): a) tip pulling NP via the capillary bridge between the tip/NP and c) fixed NP after heating of the tip. b) AFM phase image in tapping mode, during the manipulation of NP; the black line corresponds to the trajectory of the particle (slow scan axis down).

Evolution of the threshold energy dissipation (eV) to move methyl coated N Ps (hydrophobic) on silicon wafer (partially hydrophilic) vs relative humidity.

: Schemes of the system configuration (hydrophobic particle/ partially hydrophilic substrate/ partially hydrophilic tip) at different values of relative humic a) RH at 2 % (P=10 mbar), b) RH (10 to 40 %) (P= 10³ mbar) and c b) DH at 20 % (D= 10³ mbar)

b)) RH at 80 % (P= 10³ mbar).

substrate

Institut de Science des Matériaux de Mulhouse

Hydrophobic NP - Partially hydrophilic substrate

- raw nanoparticules,
 raw nanoparticles geometrically organized,
 CH₃ coated nanoaprticles ,
- ▲OH coated nanoparticles

K. Mougin et al Langmuir 2008, 24, 1577.

0

EUROPEAN CIENCE OUNDATION Institut de Science des Matériaux de Mulhouse

Conclusion

Stability of NPs based materials

OUTLOOK

Torsion Mode.. & Particle fly away...

Techniques – Torsion Mode

Nano-golf?

Before

After

41

Aknowledgements

