# Coarsening of Pb Islands and Dynamics of Pb Wetting Layer on Si(111)

## C. Z. Wang

Ames Laboratory – USDOE and Department of Physics Iowa State University

### In collaboration with:

Maozhi Li, Li Huang, Jim Evans, M. Hupalo, M. C. Tringides, K. M. Ho

## Supported by US Department of Energy

Joint ICTP-FANAS Conference on Trends in Nanotribology, Trieste – Italy 12-16 September 2011

## **Coarsening of Pb Islands on Si(111)-7x7 Surface**

Hupalo and Tringides et al. 2006

| System size: 500 x 500 nm <sup>2</sup> | Initial number of islands: 330 |
|----------------------------------------|--------------------------------|
| Total coverage ~ 1.4 ML                | T=205 K                        |



7-layer islands (circled) grow at the expense of lower height islands. After 2 hours, all 3-layer islands disappear.

## **Coarsening of Pb Islands on Si(111)-7x7 Surface**



### **Classical Theory of Islands Coarsening**

$$\mu(R) \approx \frac{\omega \gamma}{R}$$
 Gibbs-Thomson

Evolution of Island Density  $n(t) = n_0 (1 + t / \tau)^{-\beta}$ Time constant:  $\tau \propto (n_0)^{-1/\beta} \qquad \beta = 2/(m+2) \qquad m = 0,1,2$ 

For  $t >> \tau$   $n(t) \propto t^{-\beta}$  Island density is Independent of  $n_0$ 

### **Classical Island:**

- Chemical potential of the island is only dependent on the curvature of the island.
- Islands are surrounded by and communicate through a dilute lattice gas of adatoms.

### **Quantum Island:**

- Chemical potential of the island is dependent on the height of the island due to QSE, as well as curvature.
- Islands are surrounded by and communicate through a dense and dynamic wetting layer.

# Outline

- Quantum size effects (QSE) in the stability and properties of Pb/Si(111)
- Theory of QSE in coarsening of Pb/Si(111)
- Collective dynamics of Pb wetting layer
- Summary

## **Quantum Size Effect (QSE)**

Square well potential



# **QSE on the stability of metal films**



**Condition for energy minima** 

 $md = n\frac{\lambda_F}{2}$ 

### Formation and stability of Pb islands on Si(111) surface due to QSE



(Hupalo et al. PRB 64 155307(2001))

Condition for energy minima  $md = n \frac{\lambda_F}{2}$ For Pb:  $d = 2.86A, \lambda_F = 3.93A$ 

Therefore

$$2d \approx 3\frac{\lambda_F}{2}$$

#### **Quantum Size Effects in Pb/Si(111)**



Z. Zhang, Q. Niu, and C.-K. Shih, Phys. Rev. Lett. 80, 5381 (1998).
Yeh, Berbil-Bautista, Wang, Ho, and Tringides, *PRL* 85, 5158 (2000).
C. M. Wei and M. Y. Chou, Phys. Rev. B 66, 233408 (2002).

## **QSE in superconductivity: Pb/Si(111)**



(a) A variation of critical temperatures, Tc determined from temperature-dependent gap measurements for 5-15 ML.

(b) The calculated density of states near a Fermi level, DOS (EF) as a function of the layer thickness.

# (c) The positions of QWS determined experimentally.

D. Eom, S. Qin, M. Y. Chou, and C.K. Shih, Phys. Rev. Lett. **96**, 027005/1-4 (2006).

## **QSE:** Pb Adatom Diffusion on Pb(111) film



•Small diffusion barriers: 0.01 – 0.06 eV

•Higher diffusion barrier for stable thickness

•Lower diffusion barrier for unstable thickness

T. L. Chan, C. Z. Wang, M. Hupalo, M. C. Tringides, and K. M. Ho, Phys. Rev. Lett. **96**, 226102 (2006).

Experiment: Li et al., PRB 74, 075410 (2006)

## **Model for Coarsening of Quantum Islands**



*h*: height of island*R*: radius of island

- 1. Different levels of chemical potentials for islands and wetting layer.
- 2. The transition state is the same for all islands, so the attachment barrier is the same, but detachment barrier is different for islands.
- 3. The wetting layer is assumed to be spatially uniform but varies with time.

## **Rate Equations for Coarsening of Quantum Islands**

Size variation of island i with time:

$$\frac{dN_i}{dt} = 2\pi R_i \left( \sigma_i^+ - \sigma_i^- \right)$$



Attachment rate: 
$$\sigma^+ = f_0 \exp\left[-\left(\mu_T - \mu_{WL}\right)/k_BT\right]$$
  
Detachment rate:  $\sigma^- = f_0 \exp\left[-\left(\mu_T - \mu_i\right)/k_BT\right]$ 

Islands are approximated to be mesas, so

$$N_i \approx \pi R_i^2 h_i$$

N<sub>i</sub> is the size of island i

Attempt frequency  $f_0 = 10^{13} / s$ 



## **Chemical Potential of Pb Islands**

Free energy of island i

$$E_i = \pi R_i^2 h_i \varepsilon_b + \pi R_i^2 \gamma_i + 2\pi R_i h_i \gamma_s$$

 $\gamma_i$  and  $\gamma_s$  are surface energies of a mesa top and mesa sidewall, respectively.  $\varepsilon_b$  is the bulk energy per atom.

During coarsening of Pb islands on Si(111), island height is assumed not change, so a partial chemical potential for radius growth is defined

$$\mu_i(R_i) = \frac{dE_i}{dN_i}|_{h_i = const} = \Omega\left[\mu(h_i) + \frac{\gamma_s}{R_i}\right]$$

 $\Omega = 1$  is the atomic volume and  $\mu(h_i) = \varepsilon_b + \gamma_i / h_i$   $\gamma_s = 0.33 \text{ eV}$ 

Define:  $\mu_i = \gamma_i / h_i$  Then:  $\mu_3 = 0.0608 \text{ eV}$   $\mu_4 = 0.0491 \text{ eV}$   $\mu_5 = 0.0381 \text{ eV}$  $\mu_6 = 0.0335 \text{ eV}$   $\mu_7 = 0.0274 \text{ eV}$  Based on first-principles DFT calculations

## **Chemical Potential of the Wetting Layer**

We model the dense wetting layer using ordered layers of Pb on Si(111) with various coverage. Chemical potential of wetting layer is determined based on the formation energy obtained from first-principles DFT calculations.



### **Energy of wetting layer:**

$$E_{WL} = N_{WL} \varepsilon_b + N_{WL} \varepsilon$$

*ε* : Formation energy of wetting layer (per atom)

 $N_{\text{WL}}$ : number of atoms in wetting layer

$$\mu_{WL} = \varepsilon_b - 1.26 + 1.36\theta$$

### Novel Coarsening of Pb Islands on Si(111)-7x7 Surface

### Simulation is performed using the same condition as in the STM experiment

| System size: 500 x 500 nm <sup>2</sup> | Initial number of islands: 330 |
|----------------------------------------|--------------------------------|
| Total coverage ~ 1.4 ML                | T=205 K                        |

![](_page_14_Figure_3.jpeg)

7-layer islands (circled) grow at the expense of lower height islands. After 2 hours, all 3-layer islands disappear.

![](_page_15_Figure_0.jpeg)

Li, Evans, Wang, Hupalo, Tringides, Chan, and Ho, Surf. Sci. Lett, 601, L140 (2007)

The same model can also describe the growth of large Pb islands on Si(111) surface including growth in height and ring expansion morphology

![](_page_16_Picture_1.jpeg)

![](_page_16_Picture_2.jpeg)

370 x 400 nm<sup>2</sup> T=190 K 92 min later Li, Wang, Evans, Hupalo, Tringides, and Ho, *Phys. Rev. B (2009)* Zhang, Li, Wang, Evans, Hupalo, Tringides, and Ho, *Phys. Rev. B (2011)* 

### Fast dynamics of Pb wetting layer on SI(111) observed by LEEM

![](_page_17_Figure_1.jpeg)

![](_page_17_Figure_2.jpeg)

Profile evolution in the Pb  $\alpha$ -phase on Si(111) following LITD for  $\theta > \theta_c$  at (a), (c) T =186 K and (b), (d) T =300 K. The time intervals between LEEM intensity line profiles in (a) are  $\Delta t$  =4.1 sec and in (b) are  $\Delta t$  =0.2 sec. LEEM images are shown (l. to r.) in (c) at times t =0, 0.8, 15.7, 30.5, 45.4 sec, and in (d) at t =0, 0.01, 0.8, 1.4, 2.0 sec.

The dependence of the equilibration time  $\tau$ , for LITD hole radius of 17  $\mu$ m upon the initial wetting layer coverage  $\theta$ , at 341 K

K. L. Man, M. C. Tringides, M. M. T. Loy, and M. S. Altman, PRL 101, 226102 (2008)

## MD simulation based on generalized Frenkel-Kontorova (FK) model

![](_page_18_Figure_1.jpeg)

Calculate the Intermediate scattering function:

$$F(q,t) = \frac{1}{N} \left\langle \left( \sum_{j=1}^{N} e^{-i\vec{q} \cdot R_j(t+t_0)} \right) \left( \sum_{l=1}^{N} e^{i\vec{q} \cdot R_l(t_0)} \right) \right\rangle$$

Then determine the coverage-dependent collective diffusion constant  $D_c(\theta)$ 

### **Coverage dependence of diffusion constant: Pb wetting layer on Si(111)**

![](_page_19_Figure_1.jpeg)

L. Huang, C.Z. Wang M. Li, and K. M. Ho, 2011

![](_page_20_Figure_0.jpeg)

 $E_{A\to C} = -3.31\theta_A + 4.453 \text{ eV}$ 

### **KMC** Simulation

![](_page_21_Figure_2.jpeg)

# **Summary**

Quantum size effects can be used to control the growth and properties of metal films on semiconductor surfaces.

Quantum size effects induce a strong dependence of chemical potential on island height, which affects the coarsening behavior.

The dense wetting layer in Pb/Si(111) acts as a fast mass transport medium.

Thank You