TRENDS IN NANOTRIBOLOGY ICTP Trieste – 12-16 Sept 2011

Transient and steady-state features of anisotropic friction forces

Jacob Israelachvili, Kai Kristiansen, Xavier Banquy, Jing Yu, Saurabh Das, Sathya Chary, John Temelier & Kim Turner (UCSB)

Hongbo Zeng (Alberta)

Eric Charrault & Suzanne Giasson (Montreal)

What needs to be measured in a complete friction experiment

Also: Surface structure (roughness, topology), transient, time-dependent vs steady-state effects, e.g., stick-slip, ...

Surface Forces Apparatus (SFA 2000)

Recent advances in the surface forces apparatus (SFA) technique. J Israelachvili, Y Min, M Akbulut, A Alig, G Carver, W Greene, K Kristiansen, E Meyer, N Pesika, K Rosenberg and H Zeng, *Reports on Progress in Physics* 73 (2010) 1-16.

Shearing attachments to the SFA

SFA EXPERIEMENTAL SETUP

FECO fringes of two curved surfaces close together

FECO (right) and normal microscope view (left) of the two surfaces in flattened adhesive contact

FECO and microscope views of a liquid bridge/neck

Adhesion-controlled and load-controlled friction forces by SFA

Intermolecular and Surface Forces, 3rd Edition, Elsevier and Academic Press (2010). 9

Adhesion- and load-controlled friction forces by AFM

11

XYZ actuator-sensor for the SFA 2000 (3D SFA)

3D SFA attachment

Recent advances in the surface forces apparatus (SFA) technique. J Israelachvili, Y Min, M Akbulut, A Alig, G Carver, W Greene, K Kristiansen, E Meyer, N Pesika, K Rosenberg and H Zeng, *Reports on Progress in Physics* 73 (2010) 1-16.

Anisotropic lubricant fluid: n-hexadecane between mica

Sliding path of linear n-alkane molecules

Shear-induced ordering of n-eicosane previously shown by Drummond *et al.*, PRE **66** (2002) 011705, and others.

Friction of hexadecane films: details of the on- and off-axis friction forces and displacements during back and forth sliding

- Twist angle $\theta = 0^{\circ}$.
- Applied force angle $\psi = 0^{\circ}$.
- Load 6 mN (No. of layers: 5?).
- Sliding velocity $v_a = 5.1 \ \mu \text{ m/s}$.

→Shear-induced ordering of hexadecane gives anisotropic friction forces and off-axis relative surface displacements.
→Note long transient (*distance*).

Friction 'limit cycles' of hexadecane films

• Limit cycles of: (a) the total friction force, and (b) absolute relative surface velocity.

 Red path shows smooth, linear, isotropic Amontons-like sliding cycle (no off-axis displacement), shown for comparison.

• Note: displacement and velocity change smoothly at the (discontinuous) changes in the sliding direction.

• Mica configurations with other twist angles and applied force angles also give off-axis motions.

Friction of squalane – a highly branched alkane

- Load 3 mN,
- Velocity $v_a = 2 \mu m/s$,
- Twist angle θ = 0°,

• Applied force at ψ = 0°,

→ $F_{\boxtimes} \approx 0$: No off-axis friction forces or motions measured.

Anisotropically structured (polymer) surfaces: fabricated PDMS tilted micro-flaps

.... sliding against: smooth and rough glass surfaces

29

Adhesion and friction against smooth (11 nm) glass

Adhesion and friction against rough glass

