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stochasticity in the period between consecutive slip events

irregularity in the size of the stress drops 
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 What is the origin of this stochasticity?

 Nonlinearity of interactions between the slider and the surface

A diversity of surface contacts  
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Schematic sketch of a model setup.Parameters:

N – a number of rigid blocks,

Ns – a number of contacts between the block and track,

Kd – an elasticity of the driving spring,

K – a slider elasticity,

ks – an elasticity of the contact,

fsi – rupture forces which takes random values from a Gaussian distribution 
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Results of simulations

A broad distribution of stick times is retained even when all contacts are 

identical.
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Force traces for different numbers of blocks







Stochasticity: the nonuniformly stressed region involves more than one block, i.e.



Is it possible to control the stochasticity? 
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Experiment Model
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Even relatively small perturbations can cause the interval between

successive stick-slip events to phase-lock to the perturbation frequency.
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Phys. Rev Lett. 107, 024301(2011)
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Phase locking: for frequencies much higher than the typical stick-slip frequency.  

The stick time adapts itself to the value of T, such that nTt 
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Slip time relative to the forcing: temporal shift, t, from the closest peak 

of the force modulation.. 
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Experiment Theory

Phys. Rev Lett. 107, 024301(2011)



Minimal possible value of the phase: the loading force associated with this phase 

is higher than the preceding maximum of FL in the loading curve.
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• For values   1 the loading force changes monotonically with time and 

harmonic oscillations do not influence the stick-slip pattern. 

• For   1 we have the following asymptotic behavior of the phase:

min



Power law behavior of the phase
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(i)  is indeed a relevant parameter that controls a frictional response to harmonic perturbations;

(ii) There exists a minimum value of  ~ 1, below which no phase-locking is observed;

(iii) When control is applied a well-defined “backbone” exists, below which the onset of stick-slip

motion will (nearly) never occur;

(iv) This backbone is described by the power law form:   -1/2.

The data for stick-slip events are strongly clustered above this curve.



 Small oscillatory perturbations synchronize the periods between 

consecutive slip events.

 A model explains the experimental observations and elucidates the 

mechanism for phase locking. 

 We have identified one of the relevant dimensionless parameter 

and shown how this functionally affects the locking phase. 

Conclusions

The main effect of perturbations on the detachment dynamics is the 

elimination of slow fronts which correspond to a critical state.


