

(viscous)

dissipation in confined liquid films

Sissi de Beer, Dirk van den Ende, Frieder Mugele

Physics of Complex Fluids University of Twente

Wouter den Otter, Wim Briels Computational Biophysics

nanolubrication

the menu

- § confined simple liquids macroscopic contacts
 (SFA)
- **§** dynamic AFM measurements on confined liquids: *non-monotonic evolution of dissipation*
- § Molecular Dynamics simulations of simple confined Lennard-Jones fluids
 - non-monotonic evolution of dissipation
 - anisotropy of force fluctuations & dissipation
 - breakdown of Stokes-Einstein relation

force measurements on confined liquid films

layer-by-layer squeeze-out in macroscopic contacts (SFA)

combined squeeze-out and shear measurements

force measurements on confined liquid films

nano-asperity contacts

tip-sample interaction in OMCTS

tip surface distance [nm]

a growing consensus

open issues

- § relative position of maxima in stiffness & damping
- § dependence on tip shape
- § dependence on approach rate
- **§** interpretation in term of solidification, glass transition, viscoelastic behavior, ...

§ epitaxy

how to interpret the excess dissipation?

6

molecular dynamics simulations

in collaboration with Wouter den Otter & Wim Briels

prior art: Thompson , Robbins Landmann, Lynden-Bell, Schön

3dim

T=300K

 $s_{\text{OMCTS}} = 0.77 \text{nm}$

60ns PT equilibration 10ns NVE simulation

d=5 s

density profiles vs. film thickness

diffusion vs. layer thickness

but AFM does not measure diffusion

the force on the tip is noisy

fluctuation-dissipation theorem: noise à damping

(without excessive shear rates!)

mean force and number of particles

noise correlations

damping coefficient

damping coefficient

anisotropy matters

structure matters

disordered films display stronger diffusivity & damping

very heterogeneous dynamics

Stokes-Einstein relation does not hold

tips size matters

outlook: nano-rheology

- § nano-confined liquids display non-monotonous dissipation
- § disordered layer structure entails excess damping & diffusivity (violation of the Stokes-Einstein relation)
- **§** well-ordered layers display solid-like structure and little dissipation (linear response hardly sensitive to solidification)
- § strong anisotropy between z- and xy-directions

come to Leiden next April

Lorentz Center workshop Fundamental Aspects of Friction and Lubrication April 16 – 20

co-organized by the PI's FOM program FaF (Fundamentals of Friction)

M. Müser, B. Persson, R. Carpick, R. Bennewitz, E. Riedo, G. Hummer, T. Fukuma, J. O'Shea, L. Nicola, S. de Beer, A. Schirmeisen, E. Meyer, L. Bureau