Joint ICTP-FANAS Conference on Trends in Nanotribology Trieste, September 15, 2011

Bridging atomistic and continuum scales with a view to solving tribological problems

Antonio Di Carlo

Università Roma Tre Rome, Italy

Nanotribological motivation

A cartoon diagram of the AFM

Nanotribological motivation

A large test piece (from Capozza et al. 2011)

Nanotribological motivation

A typical surface coating

Straightforward Newtonian MD

$$\mathscr{L}: (\mathfrak{x}, \dot{\mathfrak{x}}) \mapsto \frac{1}{2} \sum_{i=1}^{N} m_i |\dot{\boldsymbol{x}}_i|^2 - \mathscr{V}(\mathfrak{x})$$

$$\mathfrak{x} := (\boldsymbol{x}_1, \ldots, \boldsymbol{x}_i, \ldots, \boldsymbol{x}_N)$$

$$\mathscr{V}(\mathfrak{x}) = \sum_{i=1}^{N} \mathscr{V}_{\mathbf{1}}^{i}(\boldsymbol{x}_{i}) + \mathscr{V}_{>}(\mathfrak{x})$$

 $\mathscr{V}_{>}(\mathfrak{x}^{\circlearrowright})=\mathscr{V}_{>}(\mathfrak{x})$

MD cell: a cartoon

 \boldsymbol{h}

The periodicity trick

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The periodicity trick

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Drawbacks of straightforward MD

- Number of particles, total energy, and volume (N, E, V) stay constant over time (⇒ microcanonical ensemble)
 —as remarked in 1980 by H.C. Andersen.
- Also the shape of the MD cell does not change —as pointed out by M. Parrinello & A. Rahman.
- Collective degrees of freedom enabling coarse-graining are lacking—my own focus today.

APR seminal papers

- H.C. Andersen, Molecular dynamics simulations at constant pressure and/or temperature. *Journal of Chemical Physics*, **72**(4):2384–2393, 1980.
- M. Parrinello and A. Rahman, Crystal structure and pair potentials: A molecular-dynamics study. *Physical Review Letters*, **45**(14):1196–1199, 1980.
- M. Parrinello and A. Rahman, Polymorphic transitions in single crystals: A new molecular dynamics method. *Journal of Applied Physics*, **52**(12):7182–7190, 1981.

APR cure

(rephrased and slightly extended)

$$\tau \mapsto (\mathbf{h}_1(\tau), \dots, \mathbf{h}_\ell(\tau), \dots, \mathbf{h}_n(\tau))$$
$$\mathbf{h}_\ell(\tau) = \mathbf{F}(\tau) \mathbf{e}_\ell \quad (1 \le \ell \le n)$$
$$\boldsymbol{x}_i(\tau) = \boldsymbol{p}(\tau) + \mathbf{r}_i(\tau) = \boldsymbol{p}(\tau) + \mathbf{F}(\tau) \mathbf{s}_i(\tau)$$

- p ... cell mass centre
- $\mathfrak{r} := (\mathbf{r}_1, \dots, \mathbf{r}_i, \dots, \mathbf{r}_N) \dots$ radius vectors (w.r.t. p)
- F ... cell deformation
- $\mathfrak{s} := (\mathbf{s}_1, \dots, \mathbf{s}_i, \dots, \mathbf{s}_N)$... scaled radius vectors

APR cure (discussion)

Molecular Statics vs. Molecular Dynamics (from Li et al. 2011)

APR recipe:

ad hoc extended Lagrangian

$$\mathscr{L}_{APR} : (\mathfrak{s}, \dot{\mathfrak{s}}; \mathbf{F}, \dot{\mathbf{F}}) \mapsto$$

$$\frac{1}{2} \sum_{i=1}^{N} m_i \dot{\mathbf{s}}_i \cdot (\mathbf{C} \dot{\mathbf{s}}_i) + \frac{1}{2} \mathbf{M} \cdot (\dot{\mathbf{F}}^\top \dot{\mathbf{F}}) - \mathscr{V}_{\text{near}}(\mathbf{F}\mathfrak{s}) + V_0 \mathbf{S} \cdot \mathbf{F}$$

- $\mathbf{C} := \mathbf{F}^\top \mathbf{F} \dots$ cell metric distortion
- $\mathbf{M} (= W \mathbf{I}) \dots$ scaled cell inertia tensor (given)
- V_0 **S** . . . prototype volume imes applied stress (given)

APR recipe:

equations of motion

$$m_i(\ddot{\mathbf{s}}_i + \mathbf{C}^{-1}\dot{\mathbf{C}}\,\dot{\mathbf{s}}_i) = -\mathbf{F}^{-1}\,D_i\mathscr{V}_{\text{near}}|_{\mathbf{F}\mathfrak{s}}$$

$$\mathbf{M}\ddot{\mathbf{F}} = V_0 \mathbf{S} - \sum_{i=1}^N (\mathbf{s}_i \otimes D_i \mathscr{V}_{\text{near}}|_{\mathbf{F}\mathfrak{s}} - \mathbf{F}(m_i \dot{\mathbf{s}}_i \otimes \dot{\mathbf{s}}_i))$$

-369 P	30.00	131660
	1997	
1.1.1		
	1	
	1896	0.8999
1.00	-dene	
	and the second	t de la composition d
	1998	1000

122.00	1000	S
		5 1 993 (1993)
		4.200
	e fei fei	
	1000	1000
	1.6161	1.111
	dana.	
	YEARD	0.000
	1	1
	1.000	

Interacting APR-like cells I:

the surrounding medium as a hard loading device

- Associate an APR-like cell with each body element $T_b \mathscr{B}$.
- ▷ Fix a prototype field \mathbf{P}_0 , and assume the gross motion \boldsymbol{p} to be known over body-time $\mathscr{B} \times \mathscr{T}$.
- Compute the gross deformation $\mathbf{F} = (\nabla \boldsymbol{p}) \mathbf{P}_0^{-1}$.
- For each *b*-cell, compute the reactive Piola stress S^b over time, taking $F^b = F(b, \cdot)$ as the enforced cell deformation.
- Construct a slowly varying stress field $\widetilde{\mathbf{S}}$ over the medium via $\mathbf{S}(b, \cdot) = \mathbf{S}^b$ and $\widetilde{\mathbf{S}} := \operatorname{slw} \mathbf{S}$.
- Enforce balance: $\operatorname{Div} \widetilde{\mathbf{S}} = \varrho_0 \, \ddot{\boldsymbol{p}}.$
- Balance pinpoints the gross motion p (to within a rigid motion).

Interacting APR-like cells II:

the surrounding medium as a soft loading device

- Associate an APR-like cell with each body element $T_b \mathscr{B}$.
- ▷ Assume the stress field $\mathbf{T} \in Slw$ to be known over $\mathscr{B} \times \mathscr{T}$.
- For each $b \in \mathscr{B}$, compute the *b*-cell deformation \mathbf{F}^{b} over time, taking $\mathbf{T}^{b} := \mathbf{T}(b, \cdot)$ as the applied Cauchy stress.
- Construct a slowly varying deformation field $\widetilde{\mathbf{F}}$ over the medium via $\mathbf{F}(b, \cdot) = \mathbf{F}^b$ and $\widetilde{\mathbf{F}} := \operatorname{slw} \mathbf{F}$.
- Compute the corresponding metric: $\widetilde{\mathbf{C}}\!:=\!\widetilde{\mathbf{F}}^{\top}\widetilde{\mathbf{F}}.$
- Enforce compatibility over \mathscr{B} : $\operatorname{Riem}(\widetilde{\mathbf{C}}) = \mathbf{0}$.
- Compute the rotation field \mathbf{R}^{\times} and the gross motion p such that $\nabla p = \mathbf{R}^{\times} \widetilde{\mathbf{F}} \mathbf{P}_0$ (existence ensured by \circ).
- Enforce balance: $\operatorname{Div} \mathbf{S} = \varrho_0 \, \ddot{\boldsymbol{p}}$.
- Compatibility & balance pinpoint the stress field T.

A quote from Parrinello & Rahman 1981

Whether such a Lagrangian is derivable from first principles is a question for further study.

The APR functional revisited

- Basic Lagrangian $\dots \mathscr{L}(\boldsymbol{x}, \dot{\boldsymbol{x}}) = \mathscr{K}(\dot{\boldsymbol{x}}) \mathscr{V}(\boldsymbol{x})$
- APR-like assumption $\dots x = p + r = p + F s$

Leibniz rule
$$\Rightarrow \dot{\boldsymbol{x}} = \dot{\boldsymbol{p}} + (\dot{\mathbf{F}}\mathbf{s} + \mathbf{F}\dot{\mathbf{s}}) = (\dot{\boldsymbol{p}} + \mathbf{L}\mathbf{r}) + \mathbf{F}\dot{\mathbf{s}}$$

- $\mathbf{L} := \dot{\mathbf{F}} \, \mathbf{F}^{-1} \, \dots$ cell velocity gradient: $\mathbf{W} := \operatorname{skw} \mathbf{L}, \mathbf{D} := \operatorname{sym} \mathbf{L}$
- $\dot{p} + \mathbf{L} \mathbf{r}$... entrainment velocity; $\mathbf{F} \dot{\mathbf{s}}$... streaming velocity

$$\Rightarrow \dot{\boldsymbol{x}} = (\dot{\boldsymbol{p}} + \mathbf{W} \mathbf{r}) + (\mathbf{D} \mathbf{r} + \mathbf{F} \dot{\mathbf{s}})$$

The APR functional revisited

$$\begin{aligned} \mathscr{L}_{\Box} \colon (\mathbf{s}, \dot{\mathbf{s}}; \boldsymbol{p}, \dot{\boldsymbol{p}}; \mathbf{F}, \dot{\mathbf{F}}) \mapsto \\ \frac{1}{2} \sum_{i \in \mathfrak{S}} m_i \dot{\mathbf{s}}_i \cdot (\mathbf{C} \dot{\mathbf{s}}_i) + \frac{1}{2} \left(\sum_{i \in \mathfrak{S}} m_i \mathbf{s}_i \otimes \mathbf{s}_i \right) \cdot (\dot{\mathbf{F}}^{\top} \dot{\mathbf{F}}) \\ + \frac{1}{2} \left(\sum_{i \in \mathfrak{S}} m_i \right) |\dot{\boldsymbol{p}}|^2 + \left(\sum_{i \in \mathfrak{S}} m_i \dot{\mathbf{s}}_i \otimes \mathbf{s}_i \right) \cdot (\dot{\mathbf{F}}^{\top} \mathbf{F}) \\ + \frac{1}{2} \left(\sum_{i \in \mathfrak{S}} m_i (\mathbf{F} \mathbf{s}_i)^{\cdot} \right) \cdot \dot{\boldsymbol{p}} - \mathscr{V}_{\text{near}}(\mathbf{F} \mathbf{s}) + V_0 \left(\mathbf{S} \cdot \mathbf{F} + \mathbf{b} \cdot (\boldsymbol{p} - \boldsymbol{o}) \right) \end{aligned}$$

Time-scale separation requirements

•
$$\mathbf{M} := \sum_{i \in \mathfrak{S}} m_i \mathbf{s}_i \otimes \mathbf{s}_i \dots$$
 scaled cell inertia tensor

•
$$\dot{\mathbf{M}} = \mathbf{0} \quad \Rightarrow \quad \sum_{i \in \mathfrak{S}} m_i \dot{\mathbf{s}}_i \otimes \mathbf{s}_i \in \mathrm{Skw}$$

• $\operatorname{skw}(\dot{\mathbf{F}}^{\top}\mathbf{F}) = \mathbf{0} \quad \Leftrightarrow \quad \operatorname{skw}(\dot{\mathbf{F}}\mathbf{F}^{-1}) = \operatorname{skw}\mathbf{L} = \mathbf{W} = \mathbf{0}$

• $\dot{p} = 0$

Time-scale separation requirements

- The APR-like Lagrangian reproduces the Newtonian dynamics of the *tensostatted* particle system iff:
- The applied Cauchy stress is slowly varying: $\dot{\mathbf{T}}\simeq\mathbf{0}.$
- The scaled inertia tensor is slowly varying: $\dot{\mathbf{M}}\simeq\mathbf{0}.$
- The rigid component of the cell motion is slow, i.e.,
- the cell mass centre moves slowly: $\dot{p}\simeq 0$;
- the cell spin is small: $\mathbf{W} = \mathrm{skw}(\dot{\mathbf{F}}\mathbf{F}^{-1}) \simeq \mathbf{0}.$