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Nanotribological motivation
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Matt examining research images

A schematic of a tobacco mosaic virus particle.
The red represents the RNA portion, and the
blue the protein coat that encases the genetic

material.

A cartoon diagram of the AFM

Matt D'Amato: The Landscape of Virus Hunting

Greta M. Zenner

Ever since we can remember, we've been told to cover our mouths when
we sneeze and wash our hands before eating. A large part of our parents'
(and teachers' and grandparents' and aunts' and uncles') rationale in
handing down this sage advice has to do with getting sick, or, rather, trying
not to. Those nasty miniature monsters - viruses - that are responsible for
sicknesses like the cold and flu can be found on many of the surfaces we
touch, especially if we aren't careful when we cough or sneeze. Lurking on
a kitchen countertop or the doorknob of your bedroom door, a virus can
exist in a dormant state, waiting for us to touch the surface and then our
mouths and return it to a warm body where it can resume its dirty work.

Viruses have vexed scietists ever since they've known about them and
caused illness and disease for even longer. The common cold still has no
cure, and HIV continues to confound us with its ability to morph and thus

resist preventative treatments.

Joining the ranks of the many researchers fighting in the battle against
these viral menaces, Matt D'Amato, a graduate student at the University
of Wisconsin-Madison, hopes that he can one day help render viruses
inactive by altering the surfaces on which they sit. Under the supervision
of his advisors, Professors Robert Carpick and Mark Eriksson, this
Materials Science graduate student studies the forces that are involved
when viruses and surfaces interact. "This [could] give us more information
about how viruses invade cells," explains Matt, important for preventing
infection.

Matt dreams that one day his research will help us design surfaces that
would inactivate viruses. "We know virus particles can exist in an 'active'
state outside of the body (on 'dead' surfaces) for some period of time," he
explains. "So by studying them on surfaces - determining what 'state' they
are in (say, 'active' or 'inactive'), what their conformation and structure are
on the surface, etc., we can begin to learn how to engineer surfaces to make viruses do something desirable, like make
them inactive." Imagine a kitchen counter or surgical table that causes viruses to become harmless by freezing them in
position, in essence a Medusa surface.

It's also possible that future research by Matt and other nanotechnologists like him could lead to drugs that block viral
infections.

Based on the havoc they wreak, it may seem like viruses should be huge
entities, but in reality they are extremely small - on the scale of the
nanometer, a billionth of a meter. Typically viruses range from tens to
hundreds of nanometers in length, and they consist simply of bundles of
DNA or RNA coated in protein and sometimes a lipid membrane. Matt
studies a rod-shaped particle called the tobacco mosaic virus, which
affects plant growth and is approximately 300 nanometers long and 17
nanometers in diameter.

The small size of his research subject challenges Matt with an issue
common to all nanotechnologists - how to see the extremely tiny. To solve
this dilemma, Matt uses an atomic force microscope, or AFM, when he
looks at the viruses on a surface. Most people use the electron
microscope to study these viral particles, so Matt's approach is novel.

"AFM is unique," he explains, "because you can analyze the forces involved [between the virus and the surface] by
effectively pushing and pulling on the particles and surface. You couldn't use a light microscope or any other instrument
to do this."

The AFM is particularly helpful for Matt's research because of how it works. This special microscope creates an image
of a sample by physically interacting with it - by running an extremely fine probe tip over the sample's surface and
measuring the tip-surface interactions . As a result, Matt finds the AFM helpful for a variety of reasons. "With this tool I
can effectively 'see' what the surface looks like. I can image the virus particles, measure their size and distribution, and
see what effects the nanoscale [surface] has on them."

The AFM also allows Matt to test the interaction between viruses and the surface by poking them with the microscope
tip. Matt coats a textured surface made out of a plastic called polyurethane with a layer of viruses. The nanoscale hills
and valleys on the polyurethane affects the viruses differently than a perfectly flat surface would, and Matt uses the
AFM to find out how. By probing the viruses with the AFM tip, Matt can analyze the stiffness of the viruses and the
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Nanotribological motivation
A large test piece (from Capozza et al. 2011)

Stabilizing stick-slip friction

Rosario Capozza1, Shmuel M. Rubinstein2, Itay Barel1, Michael Urbakh1, ,and Jay Fineberg3
1School of Chemistry, Tel Aviv University, 69978 Tel Aviv, Israel

2Department of Physics, Harvard University, Cambridge, MA 02138, USA
3The Racah Institute of Physics, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel

(Dated: March 21, 2011)

Even the most regular stick-slip frictional sliding is always stochastic, with irregularity in both the intervals
between slip events and the sizes of the associated stress drops. Applying small-amplitude oscillations to the
shear force, we show, experimentally and theoretically, that the stick-slip periods synchronize. We further show
that this phase-locking is related to the inhibition of slow rupture modes which forces a transition to fast rupture,
providing a possible mechanism for observed remote triggering of earthquakes. Such manipulation of collective
modes may be generally relevant to extended nonlinear systems driven near to criticality.

PACS numbers: 46.55.+d, 46.50.+a, 62.20.Mk, 81.40.Pq

PZT

PMMA/glass

PMMA
BlockLoad

cell

Translation
stage

F
N

150mm

x

z

FS=F(t)

F
S

(k
N

)

1.2

1.0

F

14 18 22 26
time(s)

Vd

time(s)

a

b

c

d

FIG. 1. Schematic views of the experimental system (a) and model
(b). Typical stick-slip motion in experiments (c) and model (d) with
no modulation of Fs. Parameter values used in model: FN =
4000N , Kd = 4 � 107N/m , M=11.5kg, V0 = 10�4m/s,
K = 108N/m, �r = 0.005s, NS = 20, N = 70, � = 6462s�1,
fs = 1.37N , �fs = 6.9 � 10�3N , k =< ki >= 5 � 106N/m,
� = 1µm.

While the frictional motion of a single block is often con-
sidered to be described by wholly deterministic laws, a close
examination reveals surprising variability in frictional pro-
cesses. Stick-slip friction is one example. Although models
[1] predict well-defined stick-slip frequencies, experiments
reveal that intervals between successive stick-slip events have
relatively broad distributions [2].
Let us consider two blocks, as in Fig.1a, that are pressed

together with a normal force, FN . When a shear force, FS , is
applied to the edge of one of the blocks, the onset of mo-
tion in this “simple” frictional system is surprisingly com-
plex. The nonuniform stress profile produced by FS excites
a sequence of rupture fronts created by successive failure of
the ensemble of discrete contacts that forms the interface be-
tween the blocks. Initiating well before the onset of macro-
scopic motion, each rupture propagates from the loaded edge
and arrests prior to traversing the entire interface [3–6]. Such
avalanche-like collective motion occurs in many forced phys-
ical systems where numerous discrete degrees of freedom are
spatially coupled [7], in the vicinity of a phase transition. In a

frictional system, when each contact is near its rupture thresh-
old, the onset of motion is mediated by three distinct types of
collective modes; rapid subsonic and supersonic ruptures as
well as “slow” rupture fronts [8, 9], nearly 2 orders of magni-
tude slower. Once initiated, the rupture velocities are coupled
to the local ratio of shear/normal stress at the interface [9].
The nucleation of these ruptures is still far from understood.

Recent experiments [9] have revealed that interfaces are lo-
cally much stronger than previously thought; sustaining local
stress ratios a few times larger than the static friction coeffi-
cient without succumbing to motion. On the other hand, earth-
quakes were found to be triggered by small perturbations gen-
erated by either tidal forcing or other very remote earthquakes
[10]. These questions motivated studies of slip onset in rock
samples separated by a granular layer, upon application of si-
nusoidal perturbations to FS [2, 11, 12]. Extending previous
work on the effects of oscillatory modulation of FN on re-
ducing dynamic friction [13], the results suggested non-trivial
dependencies on the phase [11] amplitude and frequency of
the perturbation [2, 12].
Here we demonstrate, both in experiments and in a sim-

ple model, that the random intervals between stick-slip events
can be stabilized by adding a low amplitude oscillatory com-
ponent to FS . Over a wide range of driving frequencies, a
well-defined phase relation exists between a dimensionless
variable characterizing the forcing function and the frictional
onset. Moreover, we find that this phase-locking is related to
a forced transition between slow to fast rupture modes.
Our experiments (Fig.1a) were performed on optically flat

interfaces composed of two PMMA blocks, a slider and a
base, that were roughened to about 1µm rms. The slider
had (x, y, z) dimensions of (150, 6, 70)mm in the sliding,
transverse and normal loading directions, respectively. The
base blocks had (x, y, z) dimensions of (230, 30, 30)mm. A
constant and uniformly distributed normal force, 1000 <
FN < 5000N was imposed at the start of each experimen-
tal run. FS was applied to the slider’s trailing edge via
a stiff load cell (Kister 9602A) in series with a piezoelec-
tric actuator (Piezomechanik Gmbh) and a translational stage
moving at constant velocity, V0. A ramped and modulated
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Straightforward Newtonian MD

L : (x, ˙x) 7! 1
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MD cell: a cartoon
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The periodicity trick
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The periodicity trick
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The periodicity trick
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Drawbacks of straightforward MD

• Number of particles, total energy, and volume (N,E, V )

stay constant over time (=) microcanonical ensemble)
—as remarked in 1980 by H.C. Andersen.

• Also the shape of the MD cell does not change
—as pointed out by M. Parrinello & A. Rahman.

• Collective degrees of freedom enabling coarse-graining
are lacking—my own focus today.



APR seminal papers

• H.C. Andersen, Molecular dynamics simulations at
constant pressure and/or temperature. Journal of
Chemical Physics, 72(4):2384–2393, 1980.

• M. Parrinello and A. Rahman, Crystal structure and pair
potentials: A molecular-dynamics study. Physical Review
Letters, 45(14):1196–1199, 1980.

• M. Parrinello and A. Rahman, Polymorphic transitions in
single crystals: A new molecular dynamics method.
Journal of Applied Physics, 52(12):7182–7190, 1981.



APR cure
(rephrased and slightly extended)

⌧ 7! (h1(⌧), . . . ,h`(⌧), . . . ,hn(⌧))

h`(⌧) = F(⌧) e` (1  `  n)

xi(⌧) = p(⌧) + ri(⌧) = p(⌧) + F(⌧) si(⌧)

•
p . . . cell mass centre

•
r

:= (r1, . . . , ri, . . . , rN) . . . radius vectors
(w.r.t. p)

• F . . . cell deformation

•
s

:= (s1, . . . , si, . . . , sN) . . . scaled radius vectors



APR cure
(discussion)

(a) F(⌧) = F(⌧0) . . . pre-Andersen MD

(b) s(⌧) = s(⌧0) . . . Cauchy-Born rule

(c) s(⌧) = Relax

�
F(⌧); s(⌧0)

�
. . . Molecular Statics



Molecular Statics vs. Molecular Dynamics
(from Li et al. 2011)

we selected the model tip of the closest size (7:32 nm2 or
91 atoms). While this is a challenging aspect of matching
experiment and simulation, errors in absolute friction val-
ues are likely minor since the dependences of friction on
load in the experiment, and on area in the simulations of
incommensurate contacts [Fig. 2(a)], are small.

Figure 2(b) illustrates the effect of relative tip-sample
crystallographic orientation. Because of their close lattice
constants, friction is large when the close-packed h100i
directions of the tip and sample are aligned, but falls by
!10 when they are not aligned, consistent with the ex-
pected effect of commensurability [25]. It is not possible
to determine the atomic structure of our Pt tip’s surface
experimentally, but the two surfaces are very likely mis-
aligned since the Pt tip does not necessarily have a perfectly
flat (111) orientation, and high friction is the exception in
the simulations, only occurring for a very limited range of
relative orientations. As friction is only weakly dependent
on orientation in that regime, we select a mismatch angle of
30" as a representative value.

We prescribed the lateral spring stiffness in the model to
be !6 N=m, matching the value of the total experimental
lateral stiffness determined from the slope of the friction
trace during the ‘‘stick’’ phase [Figs. 1(e) and 1(f)].

The speed dependence of mean friction is shown in
Fig. 3. The gap between the AFM and MD scanning
speeds, while substantial (a factor of !5000), is orders of
magnitude smaller than any previous work, allowing us
to explore whether results are consistent between the
two methods. Single stick-slip is clearly resolved under
all conditions. We consider the predictions from the PTT
model in the quasistatic, single slip regime [6–8,19,26].
Mean friction FL is related to speed v through the non-
linear implicit equation [6]

1

!kBT
ðFc $ FLÞ3=2 ¼ ln

v0

v
$ 1

2
ln
!
1$ FL

Fc

"
; (1)

where T is the temperature, kB is Boltzmann’s constant, Fc

the mean friction force at zero temperature, ! a parameter
determined by the shape of the lateral potential pro-
file, and v0 is a characteristic speed given by v0 ¼
ð2f0!kBTÞ=ð3ktot

ffiffiffiffiffiffi
Fc

p Þ, where f0 is the characteristic at-
tempt frequency, and ktot the total lateral stiffness [6,26].
For a sinusoidal potential with periodicity a and barrier
height E0, Fc ¼ "E0=a and ! ¼ 3"

ffiffiffiffiffiffi
Fc

p
=ð2

ffiffiffi
2

p
aÞ. Well

below v0, friction increases nearly logarithmically with
speed because the tip has less time and thus fewer oppor-
tunities to use thermal energy to overcome the local energy
barrier to slip. Well above v0, thermal energy will not assist
slip anymore, and friction approaches the plateau value of
Fc. Several AFM experiments are consistent with Eq. (1)
[6,7,18,26]. Furthermore, the statistical distribution of
friction forces was measured to match predictions from
the PTT model [8]. These results provide strong evi-
dence that atomic stick-slip in AFM is attributable to
thermally activated slip out of a local minimum as de-
scribed by the PTT model.
Within the experimental range of speeds, 1 to

1000 nm=s, friction followed the low speed trend very
well (cf. Fig. 3). With the fit parameters (Fc ¼ 0:55 nN,
! ¼ 3:0' 105 N3=2=J, and f0 ¼ 49 kHz), the PTT model
predicts that friction reaches the plateau at !10 #m=s.
While a fit to the PTTmodel is somewhat underconstrained
without a direct observation of the force plateau, signifi-
cantly postponing its onset would imply a drastic increase
of f0 into the tens of MHz, which is difficult to rationalize
both in terms of low-frequency torsional modes of the
cantilever (observed in other AFM measurements [6,26])
or in terms of apex bending modes (which are expected
to be in the GHz [27]).
Using ParRep simulations, we numerically probed

speeds from 5' 106 to 2' 109 nm=s (Fig. 3). Friction
at higher speeds (> 108 nm=s) clearly deviates from the
trend expected for thermally activated sliding. This behav-
ior is mostly determined by dissipative athermal dynamical
processes, so the sliding is not governed by thermally
activated stick-slip. Thermally activated stick-slip friction
is only seen in MD at sufficiently low speeds, which are so
far only achievable through accelerated MD. This severely
limits the regime of validity of comparisons MD simula-
tions to AFM experiments, because the AFM experiments
are in a fundamentally different regime of sliding. This
important limitation has been discussed only recently in
the case of grain boundary sliding [28].
We estimate the high-speed limit Fc through molecular

statics by finding the force required to cause a slip insta-
bility without the assistance of thermal activation. This
additional calculation of Fc is used to constrain the fit of
the MD results to the PTT model’s prediction, yielding
Fc ¼ 0:85 nN, ! ¼ 3:6' 105 N3=2=J, and f0 ¼ 40 GHz.
Both Fc and ! are remarkably consistent with those from
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FIG. 3 (color online). Mean friction measured experimentally
in two different runs (black squares, black circles) for speeds
between 1 and 1000 nm=s, and predicted via accelerated MD
(blue stars) for speeds between 0:005 m=s to 2 m=s. The black
dashed curve and blue dash-dotted curve are fittings with the
PTT model [6,7] for experimental and simulation data, respec-
tively. The fit to the MD data uses Fc ¼ 0:85 nN as obtained
from molecular statics, and is only fit to data at speeds below
0:1 m=s; higher speeds cannot be fit to the curve due to athermal
dissipative contributions to friction.
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APR recipe:
ad hoc extended Lagrangian

LAPR : (s, ˙s;F, ˙F) 7!

1
2

NX

i=1

mi ˙si·(C ˙si)+
1
2 M·( ˙F>

˙F)�Vnear(Fs)+V0S·F

• C :=F>F . . . cell metric distortion

• M (= W I) . . . scaled cell inertia tensor (given)

• V0S . . . prototype volume⇥applied stress (given)



APR recipe:
equations of motion

mi(¨si +C�1
˙C ˙si) = �F�1 DiVnear|Fs

M ¨F = V0S�
NX

i=1

(si⌦DiVnear|Fs � F(mi ˙si⌦ ˙si))



APR-based coarse graining
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APR-based coarse graining
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Interacting APR-like cells I:
the surrounding medium as a hard loading device

• Associate an APR-like cell with each body element TbB.

. Fix a prototype field P0, and assume the gross motion p

to be known over body-time B ⇥T .

• Compute the gross deformation F = (rp)P�1
0 .

• For each b-cell, compute the reactive Piola stress Sb over
time, taking Fb

= F(b, · ) as the enforced cell deformation.

• Construct a slowly varying stress field eS over the medium
via S(b, · ) = Sb and eS := slwS .

• Enforce balance: Div eS = %0 ¨p.

/ Balance pinpoints the gross motion p (to within a rigid
motion).



Interacting APR-like cells II:
the surrounding medium as a soft loading device

• Associate an APR-like cell with each body element TbB.

. Assume the stress field T 2 Slw to be known over B ⇥T .

• For each b 2 B, compute the b-cell deformation Fb over
time, taking Tb :=T(b, · ) as the applied Cauchy stress.

• Construct a slowly varying deformation field eF over the
medium via F(b, · ) = Fb and eF := slwF .

• Compute the corresponding metric: eC := eF>eF.
� Enforce compatibility over B: Riem(

eC) = 0.

• Compute the rotation field R⇥ and the gross motion p

such that rp = R⇥eFP0 (existence ensured by �).
• Enforce balance: DivS = %0 ¨p .

/ Compatibility & balance pinpoint the stress field T.



A quote from Parrinello & Rahman 1981

Whether such a Lagrangian is derivable from

first principles is a question for further study.



The APR functional revisited

•
Basic Lagrangian . . . L (x, ẋ) = K (ẋ) � V (x)

•
APR-like assumption . . . x = p + r = p + Fs

Leibniz rule ) ẋ = ṗ + (Ḟ s + F ṡ) = (ṗ + Lr) + F ṡ

• L :

= Ḟ F�1 . . . cell velocity gradient: W :

= skwL,D :

= symL

•
ṗ + Lr . . . entrainment velocity; F ṡ . . . streaming velocity

) ẋ =
�
ṗ + Wr

�
+
�
Dr + F ṡ

�



The APR functional revisited

L⇤ : (s, ˙s;p, ˙p;F,
˙F) 7!

1
2

X

i2S

mi ˙si ·(C ˙si) +
1
2

 
X

i2S

mi si⌦si

!
·( ˙F>

˙F)

+

1
2

 
X

i2S

mi

!
| ˙p|2 +

 
X

i2S

mi ˙si⌦si

!
·( ˙F>F)

+

1
2

 
X

i2S

mi(Fsi)̇

!
· ˙p� Vnear(Fs) + V0

�
S·F+b·(p�o)

�



Time-scale separation requirements

• M :=
X

i2S

mi si⌦ si . . . scaled cell inertia tensor

• ˙M = 0 )
X

i2S

mi ˙si⌦ si 2 Skw

• skw(

˙F>F) = 0 , skw(ḞF�1
) = skwL = W = 0

• ˙

p = 0



Time-scale separation requirements

• The APR-like Lagrangian reproduces the Newtonian
dynamics of the tensostatted particle system i↵:

• The applied Cauchy stress is slowly varying: ˙T ' 0.

• The scaled inertia tensor is slowly varying: ˙M ' 0.

• The rigid component of the cell motion is slow, i.e.,

- the cell mass centre moves slowly: ˙

p ' 0;

- the cell spin is small: W = skw(

˙FF�1
) ' 0.


