SHAKE, RATTLE and SLIP thermal excitations in atomic-scale friction

Joost Frenken¹ & Sergey Krylov²

¹Kamerlingh Onnes Laboratory, Leiden University, Netherlands ²Institute of Physical Chemistry, Moscow, Russia

- Atomic stick-slip: superlubricity and thermolubricity
- Role of contact flexibility: dominant!
- Many friction regimes
- Temperature dependence

Prandtl - Tomlinson model (1929/1928)

Orientational lubricity: 'Superlubricity' Note: *not* as 'super' as superconductivity Hirano & Shinjo et al. (1990, 1993, 1997) or superfluidity

Width of the peak: flake diameter

'Loose' flake

Effect of torque on freely rotating flake

Fillipov et al., Phys.Rev.Lett. 100 (2008)

Thermal excitations!

Gnecco et al., *PRL* **84** (2000) 1172 Krylov et al., *PRE* **71** (2005) 065101(R)

Thermal noise in the experiment

Simple theory with temperature

$$V\frac{dp_{i}}{dX} = -(r_{i}^{+} + r_{i}^{-})p_{i} + r_{i-1}^{+}p_{i-1} + r_{i+1}^{-}p_{i+1}$$

$$i = 2, 3, 4, \dots, i_{\max}$$

- p_i probability to find the tip in well i
- \boldsymbol{V} scanning velocity
- \boldsymbol{X} support position
- r_i^+ and r_i^- rates of activated jumps to the right and to the left, resp.

$$r_{i}^{\pm} = r_{0} \exp\left(-\frac{U_{i}^{\pm}}{k_{B}T}\right)$$
$$r_{0} = \nu \quad \text{(TST)}$$
$$U_{i}^{\pm}(X)$$
$$\nu(X)$$

Potential barriers are known functions of *X*

S.Yu. Krylov et al., *Phys. Rev.* E **71**, 065101(R) (2005)

Thermolubricity

There's a second spring: the tip

There's a second spring: the tip

There's a second spring: the tip apex

S.Yu. Krylov et al., Phys. Rev. Lett. 97, 166103 (2006)

Two-mass-two-spring model

Total potential:

Problem: ultra-slow motion of *M* and ultra-fast motion of *m* **Trick:** combine Langevin dynamics for *M*:

$$M\ddot{X} = -k\left[X - x_i(X)\right] - K(X - Vt) - M\eta\dot{X} + \xi$$

with Monte Carlo dynamics for *m*:

$$r_{ij} = r_0 \exp\left(-U_{ij}/k_B T\right)$$

D. Abel et al., Phys. Rev. Lett. 99, 166102 (2007)

"Stuck – in – slipperiness" regime

 $U_0 = 0.60 \text{ eV}$

 $U_0 = 0.25 \text{ eV}$

Krylov et al., New J. Phys. 9 (2007) 398

'Zoo' of regimes in FFM experiments

Krylov et al., New J. Phys. 9 (2007) 398

Maier, et al., *PRB* **72**, 245418 (2005)

Krylov et al., New J. Phys. 9 (2007) 398

Krylov et al., *PR B* **80**, 235435 (2009)

'Universal' behavior: hard cantilever

data: Socoliuc et al., PRL 92, 134301 (2004)

Krylov et al., *PR B* **80**, 235435 (2009)

'Universal' behavior: soft cantilever

data: Dienwiebel et al., *PRL* **92**, 126101 (2004)

Krylov et al., PR B 80, 235435 (2009)

Temperature dependence of sliding character

ordinary stick-slip

Temperature dependence of sliding character

Support position [lattice spacings]

stochastic stick-slip

Temperature dependence of sliding character

thermolubricity

Temperature dependence: hard cantilever

Temperature dependence: soft cantilever

Experimental temperature dependences

Si₃N₄ tip on basal plane MoS₂

Zhao et al., PRL 102, 186102 (2009)

Experimental temperature dependences

Janssen et al., PRL 104, 256101 (2010)

Outlook: scaling up thermolube?

- No: larger contacts have larger stiffness...
- Yes (maybe): if we play tricks

(1) multi-tip interfaces

silicon whiskers formed by vapor-liquid-solid growth

silicon 'nanograss' formed by anisotropic etching

(2) graphene-covered surfaces

Outlook: towards 'perfect' graphene

High-temperature STM movie G. Dong et al., *to be publ.* [similar study of *h*-BN: PRL **104**, 096102 (2010)]

RT ⇒ 975K. Rh(111) surface, exposed to C_2H_4 $3 \times 10^{-9} \rightarrow 1 \times 10^{-8}$ mbar

Summary

- Proper FFM description: two springs with two very different masses and time scales plus thermal excitations
- Gamma Constant Structure
 Sector Structure</p
- Measuring 'stick-slip' doesn't guarantee that the contact performs stick-slip...
- Non-trivial temperature dependence
- Many FFM measurements may be affected

Collaborators: <u>Sergey Krylov</u> (Inst. Phys. Chem., Moscow), Daniel Abel, Hugo Valk, Joshua Dijksman

www.interfacephysics.nl www.realnano.nl www.ultramicroscopy.org

