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Modelling and dynamics

The “bottom-up” approach to nanoscale- behaviour.

Identify the important degrees of freedom – usually slow.
Average/combine other processes – usually fast.
Close parallels with our experimental approachp p pp
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Dynamical framework - I

Energy landscape:
• V(x)• Adiabatic potential-

energy surface.

Typically 2 D for an
x

Typically 2-D for an 
atomic adsorbate
• Adsorption sites:p

•Structure.
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Dynamical framework - I

Energy landscape:
• V(x)• Adaibatic potential-

energy surface.

Typically 2 D for an
x

Typically 2-D for an 
atomic adsorbate
• Adsorption sites:p

•Structure.
• Metastable sites and 

T iti t tTransition states:
• Only evident from 

Dynamics.y

Corrugation has a 
direct impact on the 
dynamics.
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Dynamical framework - II

Energy landscape
• V(x)• Corrugation

( )

xInter-adsorbate interactions
• Attractive / repulsive
• Pairwise / many body

x

Pairwise / many-body

Coupling to the substrateCoupling to the substrate
• Treated as ohmic friction

Langevin description
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Langevin Equation

“How to do an experiment by calculation.”
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Matching with experiment

Calculating the scattered intensity:
Kinematic theory (c.f. neutron scattering)
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Intermediate Scattering Function: I(ΔK,t).
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• Relation to the dynamics
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Quasi-elastic scattering

Surface with several moving atoms
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Validity of kinematic theory

Compare with the full, quantum result.
•• Additional broadening: deconvolute S(ΔK,Δω) given the known, 

incident energy distribution, as in experiment.

Kinematic result
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Atom, spin-echo method

Coherent scattering, with nuclear-spin polarisation used as 
th f hthe measure of coherence.
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Method outline

Intermediate scattering function
•• Measures the time decay of structural correlation at the surface.

• Temporal correlation is measured directly
• Spatial correlation measured through the dependence on ΔΚSpatial correlation measured through the dependence on ΔΚ.

Example: Brownian motion: Dephasing rateα

( ) ( )DtKtKI 2exp, Δ−∝Δ

Diffusion const.
Related to hopping rate
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Context for experiment

STM

Prog. Surf. Sci. 84 323 (2009)



Activated motion

Arrenhius behaviour: Weak function of T

• Activation energy – usually recovered accurately.
• Pre-exponential factor – more difficult but more important.
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The problem of the pre-exponential

Recent data for CO moving on Cu(111):

14STM: Wong et al J. Chem. Phys. 123, 201102 (2005)



Models for jump dynamics

Hopping on a Bravais lattice (Δ
K

)

αg
(simplest case)
Single dephasing rate, α, which 

i i di ll P i d i ln(t)

α(

ΔK

α

varies periodically. Period is 
2π/a, where a is the jump length.

Chudley and Elliot Proc Roy Soc 77 (1961)

ln(t)ΔK

Chudley and Elliot Proc Roy Soc 77 (1961)

Hopping on a non-Bravais lattice
Multiple dephasing rates but 
with a well defined ΔKwith a well-defined ΔK
dependence. fcc-hcp hopping

on (111) surface

15Surf. Sci. 604, 1459 (2010)



Multiple sites CO/Cu(111)

Bridge and top sites
b th i l d i thboth involved in the
dynamics.

Θ = 0.1 ML

Θ = 0 04 ML

Ts = 190K

Θ = 0.04 ML
Ts = 190K

3,1,)cos(),( =−−= ∑ irgnAyxU in

16J. Phys. CM, in press (2011)
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Multiple sites CO/Cu(111)

Bridge and top sites
b th i l d i th

3,1,)cos(),( =−−= ∑ irgnAyxU inboth involved in the
dynamics.

,,)(),(
,

∑ gy
ni

in

Θ = 0 04 MLΘ = 0.04 ML
Ts = 190K

Changes near the transition state explain coverageChanges near the transition state explain coverage 
dependence.

17J. Phys. CM, in press (2011)



Small organic molecules

Landscape, forces and 
di i tidissipation
• Systems with 5- and 6-fold rotational 

symmetrysymmetry
• Brownian regime:

Benzene, C6H6/graphite (HOPG)
•• Hopping regime:

Cyclopentadienyl anion (Cp-) C5H5
-

/Cu(111)( )

Processes necessary for self-
assembly:
• Translation and rotation
• Ethanethiolate/Cu(111)

Di i i li dDissipative coupling and
molecular size: 18



C6H6/C6 6

Benzene-graphite interaction
•• Lattice match - model for graphite/graphene interactions.
• Motion in thermal equilibrium
• High surface area samples allow comparison with neutron spin echoHigh surface-area samples allow comparison with neutron spin-echo.

Coverage = 0.5ML
Temperature 140K
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C6H6/Graphite6 6

Brownian motion
•• Lack of activation

1

T = 140K
0 5 MLθ1

• Quadratic variation with ∆K

Friction:
/ p

s
   

   
 1 = 0.5 MLθ-1Friction:

• η = 2.8 ps-1

• Excluding benzene

α
 

0 
   

   collisions:  η = 2.2 ps-1

0                       1            1.6 ΔK / Angst.0

20Nature Physics 5, 561 (2009)



Cyclopentadienyl (anion) / Cu(111)

Cylcopentadiene C5H6

The molecule adsorbs dissociatively
and ionically: C5H6 → (C5H5-)ay 5 6 ( 5 5 )a

Behaviour differs from C6H6/graphite

21Phys. Rev. Lett. 106, 186101 (2011)



Cyclopentadienyl (anion)/Cu(111)

Motion does not correspond to hopping on a Bravais lattice

We have a non-Bravais lattice.  In a perfect experiment:
( ) ( )tAtKI 11 exp, α−=Δ ( ) ( ) ( )tAtAtKI 2211 expexp, αα −+−=Δ

motion strongly activated

Single decay
along [110]

Double decay along [112]Double decay along [112]
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Structure from dynamics

Periodicity in α(ΔK) indicates motion on a lattice.
The double decay indicates a non-bravais lattice.
Results correspond closely with equal occupation of fcc and 
hcp sites on the Cu(111) surface

Short and Long jumps
along [112]

Analytic model

along [112]

Equal jumps
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along [110]
Surf. Sci. 604, 1459-1475 (2010) Phys. Rev. Lett. 106, 186101 (2011)



Friction and interactions

Energy landscape: Activation energy for hopping 41 meV.
Strong friction (perfect single jump hopping) η = 2.5 ps-1.
No signature for repulsive interactions (cf. alkali metals).
DFT offers some insights into behaviour.

Charge accumulation
c.f. Pyrrole/Cu(111)

Charge depletion

Charge iso-surfaces:
±0.02 e Å-3

<112><110>

24η ~ 2 ps-1, cf 2.2 ps-1 for C6H6/ graphite



Molecules without a rotation axis

Observation of diffusional rotation:
• Dynamics of ethanethiol anion CH CH SDynamics of ethanethiol anion, CH3CH2S
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Molecular translation and rotation

What is the dynamical signature for rotation?
•• Confined motion (unlike translational diffusion)

•Correlation does not go to zero (in pure rotational hopping)
-

T 
7

3
65011 ee),( CCCKI ++=Δ −− βτβττ

4
4

3
3

21211 eee),( CCCCKI +++=Δ −−− βτβτβττ

H 

765011 ee),( CCCKI ++Δ τ

150K <112> 0.67 Å-1

Wi h l d l i
BAI += −αττ e)(

r = 4.6±0.3Å 

With uncorrelated translation
),().,(),( τττ KIKIKI TranslRotTot ΔΔ=Δ

τ e)(

26Phys Rev Lett 106, 256101 (2011)



Temperature dependence

Temperature dependence of the effective dephasing rate

210 K ΔK = 0 47 Å-1

BAI += −αττ e)(
210 K ΔK  0.47 Å ,

<112>

Ea = 18±8 meV

E = 86±5 meVEa = 86±5 meV

Break in slope accompanies a change in ΔK dependencep p g p
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Dynamical signatures

Principal dephasing rate BAI += −αττ e)(
Translation + rotation

Pure translation

28Analytic model for rotationAnalytic model for rotation



Ethanethiolate/Cu(111)

Summary:
• -• Low T (<210L): Dominated by weakly 

activated rotational diffusion. The 
equivalent two-body rotator has a radius T q y
4.6±0.3Å.

• High T (>210K): Mainly translation with 
high activation barrier

H 
high activation barrier.

• Effective diffusion constant (in the high T
regime) is significantly faster than for r = 4.6±0.3Å 
sulphur. Evidently the alkyl chain affects 
the energy landscape.

• Translational motion well described byTranslational motion well described by 
single hops so, again, we are in the high 
friction regime.
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Dissipation in molecular systems

Kinetic friction in the Langevin model.

∑
≠

++−−∇=
ji
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g

It measures the disruption to ballistic motion generated 
by “other coordinates”.y
What factors determine η ?
• Strength of the adsorbate-substrate bond.
• Magnitude of the corrugation in the energy landscape (static 

friction).
• Size/contact area etcSize/contact area etc.....
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Factors affecting dissipation

Atoms and small molecules:
•• eg: Na, CO etc typically have η ≤ 0.5 ps-1. 

Larger molecules: typically have bigger η ~ 2 ps-1.
• S b t t ti d d b t b t t b di• Substrate properties and adsorbate-substrate bonding seem 

unimportant
• c.f. Benzene/Graphite and Cp-/Cu(111), where η is similar but other p p ( ), η

factors are not.
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Thiophene vs cp- on Cu(111)

Both 5-fold rings
•• Cp- in hollow sites interacts with several

substrate atoms.
• Thiophene: top site adsorption in tiltedThiophene: top site adsorption in tilted

configuration1.

η = 2.5±0.5 ps-1.

η = 2.0±0.3 ps-1.
1Milligan et al J Phys Chem B

.
Internal degrees-of-freedom appear to dominate the friction 
f t f ti 2 3

Milligan et al., J. Phys. Chem. B
105, 140 (2001)

of centre of mass motion2,3.
322de Wijn, Fasolino, JPCM 21 264002 (2009)  3de Wijn, Phys Rev E84, 011610 (2011)



Summary

The helium spin-echo method:
•• Quantitative tool for surface dynamics – with unique attributes.
• Detailed information on static (structure) and dynamic 

propertiesproperties.
• Translational and rotational hopping can be observed in the

long-time limit of the intermediate scattering function.
•• Ballistic motion in the short-time limit remains to be investigated 

quantitatively.
• Dissipation seems to have both internal and externalDissipation seems to have both internal and external 

contributions:
• Largely  independent of the properties of the substrate and 

th d b t b t t b dithe adsorbate-substrate bonding.
• Internal molecular degrees-of-freedom appear to be 

important.p
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THE END
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