

Dynamics of small organic molecules on metallic and graphitic substrates

Bill Allison

Cavendish Laboratory, University of Cambridge. CB3 0HE, UK

 Cambridge : J Ellis, AP Jardine, H Hedgeland, AR Alderwick, D Ward, P Kole, BAJ Lechner, F Tuddenham, S Paterson.

Collaborators:

G Alexandrowicz (Haifa), P Fouquet (Grenoble), M Sacchi, S Jenkins (Chem. Cambridge), BJ Hinch (Rutgers), GP Brivio, G Fratesi (Milano)

> The "bottom-up" approach to nanoscale- behaviour.

- Identify the important degrees of freedom usually slow.
- Average/combine other processes usually fast.
- Close parallels with our experimental approach

Dynamical framework - I

- Energy landscape:
 - Adiabatic potentialenergy surface.
- Typically 2-D for an atomic adsorbate
 - Adsorption sites:
 - Structure.

Dynamical framework - I

- > Energy landscape:
 - Adaibatic potentialenergy surface.
- Typically 2-D for an atomic adsorbate
 - Adsorption sites:
 - Structure.
 - Metastable sites and Transition states:
 - Only evident from *Dynamics*.
- Corrugation has a direct impact on the dynamics.

Dynamical framework - II

- Energy landscape
 - Corrugation
- Inter-adsorbate interactions
 - Attractive / repulsive
 - Pairwise / many-body
- Coupling to the substrate
 Treated as ohmic friction
- Langevin description

Langevin Equation

"How to do an experiment by calculation."

Calculating the scattered intensity:

Kinematic theory (c.f. neutron scattering)

$$A(\underline{\Delta K},t) = \sum_{j} \exp\left[\underline{\Delta K}.R_{j}(t)\right] \quad ; \quad I(\underline{\Delta K},t) = AA^{*}$$

> Intermediate Scattering Function: $I(\Delta K, t)$.

Scattering with a realistic potential.

Interaction time is a few picoseconds

Quasi-elastic scattering

Surface with several moving atoms

Compare with the full, quantum result.

Additional broadening: deconvolute $S(\Delta K, \Delta \omega)$ given the known, incident energy distribution, as in experiment.

Atom, spin-echo method

10

Coherent scattering, with nuclear-spin polarisation used as the measure of coherence.

Method outline

Intermediate scattering function

- Measures the time decay of structural correlation at the surface.
 - Temporal correlation is measured directly
 - Spatial correlation measured through the dependence on ΔK .

Context for experiment

Prog. Surf. Sci. <u>84</u> 323 (2009)

- Activation energy usually recovered accurately.
- Pre-exponential factor more difficult but more important.

Recent data for CO moving on Cu(111):

•••• STM: Wong et al J. Chem. Phys. 123, 201102 (2005)

Models for jump dynamics

- Hopping on a Bravais lattice (simplest case)
- Single dephasing rate, α , which varies periodically. Period is $2\pi/a$, where *a* is the jump length.

Chudley and Elliot Proc Roy Soc 77 (1961)

- Hopping on a non-Bravais lattice
- Multiple dephasing rates but with a well-defined <u>AK</u> dependence. <u>fcc-hcp he</u>

fcc-hcp hopping on (111) surface

8

Multiple sites CO/Cu(111)

J. Phys. CM, in press (2011) 16

Multiple sites CO/Cu(111)

Changes near the transition state explain coverage dependence.
J. Phys. CM, in press (2011)

17

Small organic molecules

- Landscape, forces and dissipation
 - Systems with 5- and 6-fold rotational symmetry
 - Brownian regime: *Benzene*, C₆H₆/graphite (HOPG)
 - Hopping regime: Cyclopentadienyl anion (Cp⁻) C₅H₅⁻ /Cu(111)
- Processes necessary for selfassembly:
 - Translation and rotation
 - *Ethanethiolate*/Cu(111)
- Dissipative coupling and molecular size:

Benzene-graphite interaction

- Lattice match model for graphite/graphene interactions.
- Motion in thermal equilibrium
- High surface-area samples allow comparison with neutron spin-echo.

Coverage = 0.5ML Temperature 140K

Cyclopentadienyl (anion) / Cu(111)

- Cylcopentadiene C₅H₆
- ➤ The molecule adsorbs dissociatively and *ionically*: $C_5H_6 \rightarrow (C_5H_5-)_a$
- Behaviour differs from C₆H₆/graphite

Phys. Rev. Lett. 106, 186101 (2011)

Cyclopentadienyl (anion)/Cu(111)

Motion does not correspond to hopping on a Bravais lattice

> We have a non-Bravais lattice. In a perfect experiment: $I(\Delta K,t) = A_1 \exp(-\alpha_1 t)$ $I(\Delta K,t) = A_1 \exp(-\alpha_1 t) + A_2 \exp(-\alpha_2 t)$

Structure from dynamics

- > Periodicity in $\alpha(\Delta \mathbf{K})$ indicates *motion on a lattice*.
- The double decay indicates a non-bravais lattice.
- Results correspond closely with equal occupation of fcc and hcp sites on the Cu(111) surface
 Analytic model

Friction and interactions

- Energy landscape: Activation energy for hopping 41 meV.
- > Strong friction (perfect single jump hopping) η = 2.5 ps⁻¹.
- > No signature for repulsive interactions (cf. alkali metals).

Observation of diffusional rotation:

Dynamics of ethanethiol anion, CH_3CH_2S

Molecular translation and rotation

What is the dynamical signature for rotation?

- Confined motion (unlike translational diffusion)
 - Correlation does not go to zero (in pure rotational hopping)

Temperature dependence of the effective dephasing rate

> Break in slope accompanies a change in ΔK dependence

Dynamical signatures

28

Ethanethiolate/Cu(111)

Summary:

- Low T (<210L): Dominated by weakly activated rotational diffusion. The equivalent two-body rotator has a radius 4.6±0.3Å.
- High T (>210K): Mainly translation with high activation barrier.
- Effective diffusion constant (in the high T regime) is significantly faster than for sulphur. Evidently the alkyl chain affects the energy landscape.
- Translational motion well described by single hops so, again, we are in the high friction regime.

Dissipation in molecular systems

> Kinetic friction in the Langevin model.

$$m\ddot{\mathbf{r}}_{j} = -\nabla V(x, y) - (\eta) m\dot{\mathbf{r}}_{j} + \xi_{j}(t) + \sum_{i \neq j} F_{i,j}$$

- It measures the disruption to ballistic motion generated by "other coordinates".
- > What factors determine η ?
 - Strength of the adsorbate-substrate bond.
 - Magnitude of the corrugation in the energy landscape (static friction).
 - Size/contact area etc.....

- Atoms and small molecules:
 - eg: Na, CO etc typically have $\eta \le 0.5$ ps⁻¹.
- > Larger molecules: typically have bigger $\eta \sim 2 \text{ ps}^{-1}$.
 - Substrate properties and adsorbate-substrate bonding seem unimportant
 - c.f. Benzene/Graphite and Cp⁻/Cu(111), where η is similar but other factors are not.

Thiophene vs cp⁻ on Cu(111)

Both 5-fold rings

- Cp⁻ in *hollow sites* interacts with several substrate atoms.
- Thiophene: top site adsorption in tilted configuration¹.

Internal degrees-of-freedom appear to dominate the friction of centre of mass motion^{2,3}.

²de Wijn, Fasolino, JPCM **21** 264002 (2009) ³de Wijn, *Phys Rev* **E84**, 011610 (2011) ³²

Summary

- > The helium spin-echo method:
 - Quantitative tool for surface dynamics with unique attributes.
 - Detailed information on static (structure) and dynamic properties.
 - Translational and rotational hopping can be observed in the long-time limit of the intermediate scattering function.
 - Ballistic motion in the short-time limit remains to be investigated quantitatively.
 - Dissipation seems to have both internal and external contributions:
 - Largely independent of the properties of the substrate and the adsorbate-substrate bonding.
 - Internal molecular degrees-of-freedom appear to be important.

THE END