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Basis Sets

Most of the methods used to solve the one-electron
Schrödinger equation use a basis set.
Having chosen a set of basis functions {φ1(r), φ2(r), . . .},
the wavefunction is expanded as

ψi(r) =
∑
α

ciαφα(r)

and the Schrödinger equation becomes[
−1

2
∇2 + Veff

]∑
α

ciαφα(r) = εi
∑
α

ciαφα(r)
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Multiplying both sides by φ∗β(r) and integrating over r yields
the matrix version of the Schrödinger equation∑

α

Hβαciα = εi
∑
α

Sβαciα

where

Hβα = 〈φβ|
(
−1

2
∇2 + Veff

)
|φα〉

Sβα = 〈φβ|φα〉



Tight-Binding Models

Choose a basis set of atomic or atomic-like orbitals. This
makes good sense in the tight-binding limit, when the
atoms are far apart and the orbital overlap is small.
By using more orbitals per atom, the basis can be made
arbitrarily accurate.
Matrix elements between orbitals on different atoms
decrease exponentially as the interatomic separation
increases.
The tight-binding H and S matrices are sparse.



Ab-Initio Tight-Binding

In ab initio tight-binding calculations

The Hamiltonian and overlap matrix elements are
evaluated numerically.
If the basis is good enough, this can yield accurate results
even for solids that are nowhere near the tight-binding limit.



Semi-Empirical Tight-Binding

In semi-empirical tight-binding calculations

The Hamiltonian and overlap matrix elements are fitted to
various physical properties (band structures, total energies
of various crystal and molecular structures, phonon
frequencies, defect formation energies, . . .).
The matrix elements between orbitals on different atoms
decay in some simple way (which is also fitted) with
inter-atomic distance.
The underlying orbitals (which are never used directly) are
often assumed to be orthogonal, so that the overlap matrix
is the identity.



The SETB Total Energy

The eigenvalues εi are calculated by solving the matrix
eigenvalue problem for the solid. The total energy is then

E =
∑
i occ

εi +
1
2

∑
a,b

′
V pair

ab (|Ra − Rb|)

=
∑
i occ

∑
α,β

c∗iαHαβciβ +
1
2

∑
a,b

′
V pair

ab (|Ra − Rb|)

where V pair
ab (|Ra −Rb|) is a repulsive pair potential between

atoms a and b, meant to represent the ion-ion repulsion
and double-counting contributions.
This fitting-based approach is similar in style to the
methods used to construct classical interatomic potentials,
but SETB is better because it offers a more plausible
treatment of QM bond formation.



Ordinary Ehrenfest Dynamics

In ordinary Ehrenfest dynamics, the conserved total energy is

P2

2M
+

∫
Φ

(
−1

2
∇2

r + V (r,R)

)
Φ dr

and the equations of motion are

i
∂Φ

∂t
=

[
− 1

2m
∇2

r + V (r,R(t))

]
Φ

dP
dt

=

∫
Φ∗ (−∇RV ) Φ dr



Tight-Binding Ehrenfest Dynamics

In TB Ehrenfest dynamics, the conserved total energy is

P2

2M
+
∑
i occ

∑
α,β

c∗iαHαβciβ +
1
2

∑
a,b

′
V pair

ab (|Ra − Rb|)

and the equations of motion are

i
dciα

dt
=

∑
β

Hαβciβ

dP
dt

=
∑
i occ

∑
α,β

c∗iα
(
−∇RHαβ

)
ciβ

We have assumed that the basis set is orthonormal (S = I).
The solution vectors ci(t) can be evolved using a finite
difference approximation (e.g., RK4).



The Density Matrix

In practice, we work with the density matrix

ρβα =
∑
i occ

ciβc∗iα

The equation of motion of the density matrix is

dρ
dt

= −i[H,ρ]

Solving this matrix ODE evolves all of the one-electron
orbitals simultaneously.
Setting the initial electronic temperature is easy:

ρβα =
∑
all i

f (εi)ciβc∗iα



Bolonium

Orthogonal TB model with one s orbital per atom
Inverse power laws for matrix elements and pair repulsion.
Parameters fitted to FCC volume, cohesive energy, bulk
modulus.
Band filling is a parameter.

Surprisingly good description of structural properties of Cu.
Hartree terms are included in most of our calculations.

(Sutton et al., Phil. Mag. 81, 1833 (2001))



Bolonium Bandstructure



Bolonium Fermi Surface



spICED

sparse parallel Imperial College Ehrenfest Dynamics

Written by Daniel Mason
Density matrix formalism
The density matrix itself is
not sparse
F95
MPI
RK4

(www.cmth.ph.ic.ac.uk/people/d.mason/RadiationDamage/index.html)



Sputtering Simulation
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Testing the Ehrenfest Approximation

How can we test the Ehrenfest approximation?

Apply it to a system simple enough to be solved exactly

A system of harmonic phonons interacting weakly with a bath
of non-interacting electrons is an obvious choice.



Validity of the Ehrenfest Approximation

Consider a system of electrons (initially at temperature Tel)
weakly coupled to a system of phonons (initially at temperature
Tion). The energy transferred to the electrons

∆Ee(t) = 〈Ψ(t)|ĤQM|Ψ(t)〉 − 〈Ψ(t = 0)|ĤQM|Ψ(t = 0)〉

may be calculated both in exact QM and in the Ehrenfest
approximation using perturbation theory (FGR).

QM =
2πt
~
∑
q,λ

~ωλ(q) {〈Nq,λ〉A(ωλ(q))− (〈Nq,λ〉+ 1)E(ωλ(q))}

Ehr =
2πt
~
∑
q,λ

~ωλ(q) {〈Nq,λ〉A(ωλ(q))− 〈Nq,λ〉E(ωλ(q))}

Only difference is spontaneous phonon emission term
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Validity of the Ehrenfest Approximation

For a system of electrons and phonons, can calculate energy
transferred to electrons exactly using FGR.

Ehrenfest neglects spontaneous emission of phonons by
electrons; stimulated emission and absorption treated properly.

Spontaneous phonon emission negligible when Tion � Tel.
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Ehrenfest phonons do not equilibrate with the electrons; the ions
lose KE continuously and eventually come to rest.
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Electronic Friction

Several attempts have been made to model electronic stopping
in the low-energy regime by adding a drag to MD simulations:

MR̈ = −∇V − βṘ

Then

d
(

1
2MṘ2 + V

)
dt

= MR̈ · Ṙ + (∇V ) · Ṙ = −βṘ2.

Equivalent Statements

Drag force ∝ Ṙ
Stopping power ∝ Ṙ
Rate of transfer of energy to electrons
∝ KE



Vibrating Atom

Displace and then vibrate one atom with small amplitude

Rosc(t) = Rinit + A sin(Ωt)



Fermi Golden Rule

Start system in thermal state at temperature T and apply FGR
to work out energy transfer to electrons. Obtain

∆E(t) =

∫
εq(ε) s(ε,Ω, t) dε

where

q(ε) =
1

2~2

∑
i,j

′
|Vij |2f (εi)(1− f (εi + ε))δ(ε− εj + εi)

s(ε,Ω, t) = t2
{

sinc2
[

(ε− ~Ω)t
2~

]
+ sinc2

[
(ε+ ~Ω)t

2~

]}



Size Effects

At short times, the sinc2

function samples many
available transitions.
At long times, the sinc2

function tends to a δ
function.
Granularity of available
transitions most apparent
at low T , large t .







Energy Loss Simulation



Three Classical Models

Model Damping Reference

1 βn(t) = β Finnis et al.
PRB 44, 567 (1991)

2 βn(t) =

{
β KE > 10eV
0 otherwise

Nordlund et al.
PRB 57, 7556 (1998)

3 βn(t) = β F (ρn(t))
Caro and Victoria

PRA 40, 2287 (1989)



Ehrenfest Simulations

9× 8× 7 fcc cells (2016 atoms) evolved for 200fs.
24 PKA directions in irreducible 1/48th of sphere.
10 PKA energies (100eV – 1keV).
Electrons initially in thermal state at temperature Te.



Comparison of Damping Models



R2 Goodness of Fit

Caro/Victoria,
viscous, KE cutoff
Viscous damping
models work well
KE cutoff model not
so good
Caro and Victoria
density-dependent
model best



Replacement Collision Sequences

Caro/Victoria,
viscous.
Empty symbols
show RCS’s only.



Direction Dependence of Damping

0 1 2 3 4eV

Energy transfer 5 fs into a 2 keV cascade at 500 K.



Validity of Damping Models

Simple Fdrag = −βṘ damping works surprisingly well when
the energy transfer is averaged over the cascade.
No evidence in support of low-energy cutoff.
Replacement collision sequences have higher damping,
suggesting that damping of individual ionic trajectories may
be strongly direction and position dependent.
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Electronic Heating

The final-state occupations of the instantaneous eigenstates
look very like a Fermi-Dirac distribution.



Fermi-Dirac Fit
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Why Fermi-Dirac?

In the basis of instantaneous energy eigenfunctions, the
electrons make transitions from state to state.
The energies of these transitions depend on the frequency
spectrum of the time-dependent potential of the moving
ions.
The frequency spectrum is not thermal.
The electrons are non-interacting and cannot equilibrate
with each other.
So why do we see a Fermi-Dirac distribution?



Why Fermi-Dirac?

Explanation
The jumps in energy are small and more or less random, so the
distribution of occupation numbers diffuses.
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An error function looks very like a Fermi-Dirac distribution
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From Temperature Back to Energy
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The fitted temperatures are consistent with the energy
transferred to the electrons:

∆E = Cv Te =
π2

3
g(EF )k2

b Te × Te

Can talk about an electronic temperature during the cascade.



Truly a Temperature?

The one-electron Ehrenfest states evolve according to

i
∂ψi(t)
∂t

= Ĥ(t)ψi(t)

The instantaneous eigenfunctions of the Hamiltonian at
time t may be obtained by solving

Ĥ(t)ui(t) = εi(t)ui(t)

These also vary with time (because Ĥ does), but not in the
same way as ψi(t).
Even if we start in an instantaneous eigenfunction, we do
not remain in one.

The Ehrenfest-evolved states ψi(t) are not
the instantaneous energy eigenstates ui(t)



Evolution of the Density Operator

Under Ehrenfest evolution, the initial density operator

ρ̂(t = 0) =
∑

i

|ui(0)〉 fi 〈ui(0)|

becomes

ρ̂(t) =
∑

i

|ψi(t)〉 fi 〈ψi(t)|

The occupations fi of the Ehrenfest-evolved orbitals ψi(t)
are unchanged.
Tr[ρ̂ ln ρ̂ + (1− ρ̂) ln(1− ρ̂)] is also unchanged. Evolution is
isentropic.
When re-expressed in the basis of instantaneous
eigenstates ui(t), the Ehrenfest-evolved density matrix is
not diagonal.
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Temperature and Unitarity

In the basis of Ehrenfest evolved states, the density matrix
remains diagonal with unchanged occupations.

In the basis of instantaneous energy eigenfunctions, the
density matrix is not diagonal.
Nevertheless, the occupations (diagonal elements) look
thermal with a steadily rising temperature.
Entropy is fixed, but temperature rises!
If we forget off-diagonal density matrix elements, entropy
rises correspondingly.
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Electronic Excitations and Forces

Heating the electrons weakens the bonds between atoms.
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The 〈100〉 Channel in Cu



Screening Potential

Hartree potential around an ion moving down a 〈100〉 channel at
0 keV, 10 keV, and 365 keV. Note the charge resonance at 365 keV.



Charge Resonance



Stopping Power Resonance



Resonant Excitation of Localized States
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Electronic Friction as a Tensor

The drag coefficient β is really a position-, direction- and
history-dependent tensor.

Take a 2048-atom chunk of perfect
crystal.

Displace central atom.

Vibrate with low amplitude at
ω = 0.5 rad/fs.

Measure energy transfer.
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Directional Damping



The Non-Adiabatic Force

Density of states per atom

Sum over neighbours

Local density of states on a

Relative velocity

Adiabatic force

Fnon-adi,a ≈ −2~ξ
∑

b∈Na

√
Φ0

Φ2
aΦb

(∇aHab · ṙab)∇aHab

Φa =
∑

b∈Na
(Hab)2 as in second-moment EAM.

ξ = adjustable parameter.
Easy to evaluate and local.
Easy to combine with EAM.



Directional Damping (again)

Simulation Model



Oblique Collision (cont.)



Resolved Forces

PKA Later atom



Summary

MD is essential for understanding cascades, but it would
be good to incorporate effects of electrons sensibly.
Many small excitations heat the electrons.
Viscous damping captures average energy transfer.
But non-adiabatic force is really directional.
Simple expression for non-adiabatic force captures its
direction and magnitude.
Can we also improve the description of electronic heat
transport?
See http://www.cmth.ph.ic.ac.uk/people/d.mason for more
information.
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