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THE PROBLEM:  

SOLVING KOHN-SHAM EQUATIONS 

 Kohn-Sham equations: 

 

 

 

 

 

 

 
 

 to be solved self-consistently (Hartree-Fock very similar) 
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

Nuclear-electron interactions  Basis sets 

All-electron    Basis functions (), Size (M) 

Pseudopotentials 
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Density constructed with KS orbitals 

fn = occupation numbers 

KS orbitals must be orthogonal 
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NUCLEAR-ELECTRON INTERACTION 

ALL-ELECTRON METHODS 

 All-electron methods:  

 Core, semi-core and valence electrons  treated on same footing 

 Bare Coulomb interaction used 

 

 Muffin-tin orbitals (solid-state): divide space into atomic 

spheres and interstitial regions. Atomic problem solved in the 

spheres, and matched to interstitial solutions. 

 KKR – LMTO (Hankel functions) 

 APW – LAPW  (Plane waves) 

 ASW (Spherical waves) 

 

 Localized basis sets (quantum chemistry): 

 Gaussian-type orbitals (GTO) 

 Slater-type orbitals (STO) 

 Linear combination of atomic orbitals (LCAO) 

 

 



NUCLEAR-ELECTRON INTERACTION 

PSEUDOPOTENTIALS 

 Constructing pseudopotential theories:  

 Core electrons do not participate in bonding. Consider 
explicitly only valence electrons 

 Replace nucleus and core electrons with an ionic core or ion 

 Replace bare Coulomb interaction with screened Coulomb 

 Valence orbitals have many oscillations in the core region 
(r<rc). This is expensive computationally for certain popular 
basis sets (PW). However, this region is not relevant for the 
chemistry. Hence, replace the screened potential vsc

l(r) 
with a nodeless, smooth pseudopotential vl

ps(r) for r < rc 

 For each angular momentum l, the valence pseudo-wave 
function should be the ground state of vl

ps(r). 

 Be careful that the atomic scattering properties (phase 
shifts) are not effected by pseudization. 
 

  Caution: swift projectiles can probe the core region, where 
pseudization took place. This has to be monitored carefully 

 

 

 



PSEUDOPOTENTIALS:  

NON-LOCALITY AND NORM-CONSERVATION  

 Valence orbitals must be orthogonal to core orbitals of the same 

angular quantum number. It is convenient (flexibility) to have an 

l-dependent pseudopotential: 

 

 

 

 Norm-conserving pseudopotentials (Hamann, Schlüter and 

Chiang 1979):  

1. If all-electron and pseudo wave functions coincide for r > rc , the 

atomic scattering properties are preserved.  

2. If the norm of all-electron and pseudo wave functions inside the 

core is preserved, the true potential and the pseudopotential 

have the same first order variation in energy around the 

pseudization energy (generally the neutral atom eigenvalue): 

transferability 
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PSEUDOPOTENTIALS:  

SOME DETAILS 

 Electronic configuration: the all-electron reference calculation 
is done for a particular electronic configuration. Transferability 
should be such that this choice is not terribly important. 
 

 Norm-conserving: 
 Bachelet-Hamann-Schlüter (1982) 

 Troullier-Martins (1991) 
 

 Ultrasoft: Norm-conservation leads to “hard” pseudopotentials. 
Wave functions very peaked, require many PW to represent them. 
Relaxing the norm-conservation condition for the matching at the 
core radius, but retaining the norm for transferability leads to 
“softer” pseudopotentials. 
 RKKJ 

 Vanderbilt 

 PAW (Projected Augmented Waves, is practically all-electron) 
 

 Multiple panels: pseudize at two or three different energies to 
improve transferability 
 

 Nonlinear core corrections: take into account non-linearity of 
XC in the region where core and valence densities overlap 



PSEUDOPOTENTIALS:  

OXYGEN 

Effect of electronic configuration 



PSEUDOPOTENTIALS:  

POTASSIUM 

Neutral vs charged reference 

electronic configuration 



BASIS SETS 

 Basis set representation of KS orbitals: 

 

 

 

 (r) can depend on energy (eigenvalue). In that case one has 

to solve a complex non-linear secular equation (e.g. KKR) 

 

 If they are energy-independent, the KS equations become a 

generalized eigenvalue problem: 

 

 

 

 

 The same can be done for Hartree-Fock (Roothaan-Hall eq.) 
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BASIS SETS 

PERIODIC SYSTEMS 

 Basis set representation of KS orbitals: 

 

 

 

 

 

 

 KS equations: 

 

 

 Density: 
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weights occupations 

• Fermi-Dirac 

• Methfessel-Paxton 

• Marzari-Vanderbilt 

• Tetrahedron 

• Baldereschi 

• Chadi-Cohen 

• Monkorst-Pack 

• Moreno-Soler 

k-points 



BASIS FUNCTIONS 

 Floating: do not move with the atoms 
1. Plane waves (PW) 

2. Real space grids (fixed and adaptive) 

3. Wavelets 

4. B-splines 

5. Lagrange polynomials 

6. Psinc 

 Local orbitals: move with atoms 
1. Atomic orbitals (LCAO) 

2. Numerical 

3. Hydrogenic 

4. Slater-type orbitals (STO) 

5. Gaussian-type orbitals (GTO) 

 Mixed: 
1. PW + GTO 

 Augmented: 
1. APW, ASW, MTO  

 

 

 

 

 

 

 

Completeness 

BSSE 



CODES AVAILABLE 

 All-electron 
1. LAPW  

1. Wien2k (Vienna) 

2. LMTO 
1. Stuttgart (Andersen, Jepsen) 

2. Methfessel-van Schilfgaarde-Paxton 

3. Savrasov 

3. Local orbitals 
1. Crystal (Torino, Gaussians) 

2. Dmol (PSI, Gaussians) 

3. FHI-AIMS (Berlin, Numerical) 

4. Gaussian, Gamess, NWChem, Dgauss, etc (Gaussians, Quantum Chemistry) 

 Pseudopotentials 
1. Plane Waves 

1. VASP (Vienna) 

2. Quantum-espresso (Trieste) 

3. CPMD (Zurich-Stuttgart) 

4. CASTEP (UK) 

5. ABINIT (Belgium) 

6. FHI (Berlin) 

2. Local orbitals 
1. SIESTA (Spain, LCPAO) 

2. QUICKSTEP (Zurich, Gaussians) 

3. ONETEP (UK, psinc) 

4. CONQUEST (UK, B-splines) 

 

 

 

 

 



FLUX DIAGRAM OF A PW CALCULATION 



EXAMPLE:  

ELECTRONIC STRUCTURE OF UO2 

 

Using the quantum-espresso package 

(http://www.quantum-espresso.org/) 

 

• Pseudopotentials 

• Plane wave basis set 

 

http://www.quantum-espresso.org/
http://www.quantum-espresso.org/
http://www.quantum-espresso.org/


PROPERTIES 

 fluorite structure 

 fcc, 3 atoms un unit cell 

 Lattice constant = 10.26 Bohr 

 Electronic insulator. Eg=2.1 eV 

 Electronic configuration of U: [Rn]7s26d15f3 

 U4+: f2 

 5f-band partially occupied (2/7) 

 UO2: splitted by crystal field: 
t1u(3)+t2u(3)+ag(1) 

 Still partially occupied (2/3) 

 Jahn-Teller distortion opens gap. 



PSEUDOPOTENTIAL 



CONVERGENCE WITH BASIS SET SIZE 



ENERGY-VOLUME CURVE 



GGA(PBE) DENSITY OF STATES 



GGA+U DENSITY OF STATES 



GGA+U DENSITY OF STATES: DISTORTED 


