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Summary 

•  The coupled electron-nuclear system 
•  The Ehrenfest theorem 
•  The Ehrenfest approximation 
•  Why is the Ehrenfest approximation nonadiabatic? 
•  Two reasons for going beyond Ehrenfest 
•  Considerations: 

–  Heating rates 
–  Model systems 

•  Survey of approaches to the problem 



Comments and notation 

•  ‘Nuclei’ and ‘ions’ are synonymous 
•  Use  

–  I,J to label ions (nuclei) with coordinates RI,  
–  i,j to label electrons with coordinates ri,  
–  n,m to label adiabatic electronic states 

•  Will not discuss how to solve the electronic part of 
the problem – assume we have some good (or at 
least adequate) way of doing this 



The Ehrenfest theorem: general case 

For any quantum system with a 
Hamiltonian of the form 
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Any other operators 
commuting with P 
and R 
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where the expectation values are defined using the full density 
operator of the system: 

This gives rise to exact equations for the corresponding expectation 
values: 

(can be evaluated in any representation – 
Schrödinger, Heisenberg or interaction) 

the exact Heisenberg equations of motion are 



The Ehrenfest theorem: electrons and nuclei 
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The exact Ehrenfest equations for the nuclei become 

For a non-relativistic system of interacting electrons and nuclei, we have 

Force operator on nucleus I, evaluated in 
the full electron-nuclear quantum state 

For operators acting on the ions only �Ô� = Tr[ρ̂ionÔ]

Ĥion = T̂ion + V̂ion =
�

I

P̂
2
I

2MI
+

e
2

4π�0

�

I>J

ZIZJ

|R̂I − R̂J |

ρ̂ion = Tre[ρ̂]with the nuclear density operator 



The Ehrenfest Approximation 
Two fundamental parts: 

1. Factor the total density operator into electronic and nuclear parts 

ρ̂ = ρ̂ion ⊗ ρ̂e
2. Assume the nuclei are sufficiently massive that their positions and 
momenta can be regarded as simultaneously well defined, and that 
the density operator is sharply peaked about the average values of 
both quantities: 

R̂I → RI = �R̂I�
P̂I → PI = �P̂I�

So the parts of the Hamiltonian relevant to the electrons become 

‘Classical’ nuclei 

Ĥe,eff(R) = T̂e + V̂e−e + V̂e−ion ≈
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Uncorrelated ions and electrons 



Equations of motion in the Ehrenfest 
approximation 
Within this approximation the Ehrenfest equations for nuclear motion become 

∂tRI =
PI

MI

where 

�. . .�e = Tr[ρ̂e . . .]F̂I,e ≡ −∇RI
V̂e−ion(r̂,R)

Note this is the same operator as appears in the Hellman-Feynman force, 
though we did not use the H-F theorem in our derivation 
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Vion(R)) ≡ �F̂I,e�e +
e2

4π�0

�

J

ZIZJ(RI −RJ)

|RI −RJ |3

∂tρ̂e =
1
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Electronic state determined by the electronic Hamiltonian along the 
average path: 



When will the approximation fail? 

•  Either (or both) of the two fundamental assumptions 
could be wrong: 
–  The nuclei might not behave classically  

•  most important in situations involving low temperatures or 
tunnelling 

–  The factorization into electrons and ions might fail  
•  most important  in situations involving excited electronic states, 

particularly when states are nearby in energy 
•  has important consequences for the computation of energy 

transfer between ions and electrons 



The Born-Oppenheimer approximation 

Contrast Ehrenfest approximation with the Born-Oppenheimer 
approximation: initially neglect the nuclear kinetic energy term, 
so all remaining parts of the Hamiltonian are diagonal in R 

Ĥe,eff(R)|ψn(R)� = En(R)|ψn(R)�
Solve electronic problem to 
find electronic states and 
energies depending 
parametrically on R 

Then solve the nuclear problem on the electronic energy 
surface: 

[Ĥion + En(R)]|χn,m� = En,m|χn,m�



Born-Oppenheimer molecular dynamics 

Treat the nuclear problem as classical and look at dynamics on an 
individual potential surface (most commonly the ground state): 

∂tRI =
PI

MI

∂tPI = �ψn(R)|F̂I,e|ψn(R)�+ Fnuc,I ≡ Fn,I

All computed using an electronic state obtained from the time-
independent Schrödinger equation: 

Ĥe,eff(R)|ψn(R)� = En(R)|ψn(R)�
Can also use these as a basis to expand the Ehrenfest state: 
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Avoided crossings 

The classic point of failure for Born-Oppenheimer dynamics is the 
avoided crossing. 
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Degeneracy of two states of the same symmetry 
is a special condition, since it requires equal 
eigenvalues of 
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Requires E1 = E2 and |∆| = 0
•  Two real conditions (real Hamiltonians, with time-reversal symmetry) 
•  Three real conditions (complex Hamiltonians, no time-reversal symmetry) 
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So degeneracies between adiabatic states are very unusual, occuring on 
surfaces of codimension two (or three) in nuclear coordinate space.  In one 
dimension they are avoided. 



The problem with degeneracies 

Define a non-adiabatic coupling vector 

dmn(R) = �ψm(R)|∇Rψn(R)� = �ψm|∇RĤe,eff |ψn�
Em(R)− En(R)

Diverges near degeneracies 
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Two-level example: 

Rapid change of 
adiabatic (BO)state 

Out (fast 
passage) 

Out (slow or 
adiabatic passage) 

In 



Conical intersections 

For a system with time reversal symmetry in two dimensions the 
intersection is at a single point in coordinate space 

In higher dimensions the  
branching space is translated 

through a seam of dimension n-2 

�0.5
0.0

0.5

�0.5
0.0

0.5

�0.5

0.0

0.5

After traversing the seam, at least two adiabatic states contribute to total 
state, which becomes 

|Ψ� ≈
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cn(t)|ψn(Rn)� ⊗ |χ(Rn)� �=
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Entangled state, not 
separable into electron and 

nuclear parts 
Different forces from different states, so 
different semi-classical paths dominate 

Many subtlelties in adiabatic 
description; see Yarkony Rev Mod 
Phys 68 985 (1996) 



The message 

Conical intersections (or avoided crossings) break 
Ehrenfest, just as they break Born-Oppenheimer 

dynamics 



Forces and energy transfer 

Exact heating rate for ions is 

∂t�T̂ion� =
�

I

� P̂I
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· F̂I�

but in Ehrenfest approximation it becomes  

�

I

PI

MI
· �F̂I�e Average force on ions from electronic 

system, all fluctuations averaged away 

Hence lack of spontaneous emission from electronic states in 
Ehrenfest approximation (Foulkes talk) 
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Example: dynamics of current-induced heating 
Tight-binding model of a conducting chain: 

Vbias=0.1V 
(cooling) 

Vbias=1.0V 
(heating) 

Dynamic atoms (Tinitial=300K) 
Vgate 

Vbias=0 Vbias=1.0V 

Static atoms: 

Landauer 
value 

Horsfield et al. J. Phys. Cond. Matt. 16 3609 (2004) 



Beyond Ehrenfest?  Several classes of 
method 

•  Some methods based on Born-Oppenheimer surfaces and 
transitions between them 

•  Others directly approximate the full evolution equations 
•  Some can be viewed as both 
•  I will discuss 

–  Surface hopping 
–  Mixed quantum-classical dynamics 
–  ‘Frozen gaussians’ and ‘ab initio quantum molecular dynamics’ 

Explicit inclusion of fluctuating forces from electronic degrees 
of freedom: next talk 



Surface hopping 

Consider adiabatic electronic states (depending 
parametrically on nuclear coordinates) |ψn(R)�

Use non-adiabatic coupling vector 
dmn(R) = �ψm(R)|∇Rψn(R)�

to evolve electronic density operator at a given 
nuclear position  

⇒ ∂tρnn = −2
�

m

�[ρ∗nmṘ · dnm]

Population of 
adiabatic state n 

Transition rate bnm 
from n to m 

ρ̂e =
�

n,m

ρnm(t)|ψn(R)��ψm(R)|e−i(En−Em)t/�

Tully J Chem Phys 93 1061 (1990)  



This correction can be derived from a path-integral approach to the dynamics 
due to Pechukas:  

MIR̈I(t) = −��ψ̃β(t, t��))|∇RI Ĥe,eff |ψ̃α(t, t�)�
�ψ̃β(t, t��)|ψ̃α(t, t�)�

Coker and Xiao J. Chem. Phys. 102 496 (1995) 
Pechukas Phys Rev 181 176 and 184 (1969) 

t 
t’ 

|ψα�

|ψβ�
t’’ 

(non-local in time, so difficult to implement in full) 

Surface hopping (2) 

Seek the hopping rate that gives the fewest possible transitions between 
adiabatic states consistent with this expression: hop with probability 

gnm =
bnm
ρnn

If the hop nèm happens,  velocities are altered in order to conserve total 
(nuclear + electronic) energy by adding a correction in the direction of dnm(R) 

Minimal switching criterion 



Example 
Response to photoexcitation of the second excited 
state (S2) of CH2NH2

+ 

S2 states S1 states 

S0 states 

Tapavicza et al. Phys. Rev. Lett. 98 023001 (2007) 



Advantages and disadvantages 

•  Advantages 
–  Efficient to implement 
–  Retains some 

correlation between 
nuclear and electronic 
motions 

–  Can be coupled with a 
range of electronic 
structure techniques 

•  Disadvantages 
–  Assumes total loss of 

phase information after 
each surface-hopping 
event 

–  Some procedures are 
ad hoc 

–  Difficuly to improve 
systematically 



Summary and conclusions 

•  Ehrenfest is a well-defined approximation with a wide 
range of applicability 

•  But it breaks down in important situations: 
–  When considering energy transfer from hot electrons to cold ions 
–  When working near conical intersections or avoided crossings 

•  Importance of adiabatic coupling vector to control 
approximations 

•  A range of approaches to the coupled electron-nuclear 
problem exist, each with its own advantages and 
disadvantages 


