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Outline 

•  Some previous extensions to Ehrenfest: 
–  Mixed quantum-classical dynamics 
–  ‘Frozen gaussians’ and ‘ab initio quantum molecular dynamics’ 

•  The CEID approach (Coherent Electron-Ion Dynamics): 
–  Focusing on correlations 
–  Moment CEID  
–  polyCEID (motivation and introduction) 
–  Details and applications: following talk by Lorenzo Stella 

•  Outlook and conclusions 



Mixed quantum-classical dynamics (1) 

Consider Wigner transform of a nuclear density operator ρ 

and of a nuclear operator O 

OW (R,P) = h−3N
�
dze−iP·z/��R+ z/2|Ô|R− z/2�

So expectation value is 

ρW (R,P) = h−3N
�
dzeiP·z/��R− z/2|ρ̂|R+ z/2�

and evolution (Schrödinger picture) is 

→
HΛ = HW e�Λ/2i

←
HΛ = e�Λ/2i

HW Λ =
←
∇R

→
∇P −

←
∇P

→
∇R

�Ô� = Tr[ρ̂Ô] =
�
dRdPOW (R,P)ρW (R,P)

Moyal product 

∂tρW (R,P) = − 1
i� (

→
HΛρW − ρW

←
HΛ) ≡ − 1

i�HW ∗ ρW



Mixed quantum-classical dynamics (2) 
Key idea: make Wigner transform only with respect to nuclear variables.  Keep 
full quantum equation of motion for ‘light’ variables r and p, but for ‘heavy’ 
variables R and P truncate to lowest order in ħ: 

→
HΛ ≈ HW (1 + �Λ

2i )
←
HΛ ≈ (1 + �Λ

2i )HW

∂tρW (R,P) ≈ 1
i� [HW , ρW ] + 1

2 ({HW , ρW }− {ρW , HW })

Classical Poisson bracket 

{HW , ρW } = −HWΛρW

Quantum commutator 

[HW , ρW ] = HW ρW − ρWHW

Nielsen, Kapral and Ciccotti J Chem Phys 112 6543 (2000) 
Kapral  Ann Rev Phys Chem 57 129 (2006)  



Mixed quantum-classical dynamics (3) 

In a basis of adiabatic states, equation of motion becomes  

∂tρnn� = −i
�

mm�

Lnn�,mm�ρmm�

with the Liouvillian super-operator represented as 

iLnn�,mm� = (iωnn� + iLnn�)δnmδn�m� − Jnn�,mm�

Jnn�,mm� = −PI

M
·dnm

�
1 +

1

2
Snm∇P

�
δn�m�−PI

M
·d∗

n�m�

�
1 +

1

2
S∗
n�m�∇P

�
δnm

iLnn� =
�

I

�
PI

MI
·∇RI +

1

2
(FI,n + FI,n�) ·∇PI

�

Commonly implemented by surface hopping (again): evolve forward through Δt 
using L and consider transitions nèm or n’èm’ with probability 

πn→m =

����
P

M
· dnm

����∆t

�
1 +

����
P

M
· dnm

����∆t

�−1

Classical evolution 
with average force of 
n and n’ 

Effect of transitions between quantum states 



Advantages and disadvantages 

•  Advantages 
–  Makes contact with 

surface hopping 
approach 

–  Natural recovery of 
separate quantum and 
classical evolution 

•  Disadvantages 
–  Systematic 

improvement difficult 
–  Representation of 

coupled electron-ion 
system not available 

–  Large number of 
trajectories required 



Wavefunction propagation: ab initio multiple 
spawning (AIMS) technique 

Represent full wavefunction as 

Ψ(r,R) =
�

n

ψn(r;R)χn(R, t)

with each χ expanded as a sum of Gaussians: 

χn(R, t) =

Nn(t)�

j=1

Cnj(t)χnj(R;Rnj ,Pnj , γnj ,αnj)

χnj(R;Rnj ,Pnj , γnj ,αnj) ∼ eiγnj exp[−αnj(R−Rnj)
2+iPnj ·(R−Rnj)/�]

Basis function position centres and  momenta initially chosen from Wigner 
distribution and then propagated classically along with phases: 

∂tRnj,I =
Pnj,I

MI
∂tPnj,I = �ψn(R)|F̂I,e|ψn(R)�+ Fnuc,I

∂tγnj =
�

I

P2
I

2MI
− [En(Rnj) + Vion(Rnj)]

Phases Exponents (fixed) Expansion coefficients 



AIMS (2) 
Propagate nuclear wavefunction expansion coefficients quantum 
mechanically from the Schrödinger equation: 

∂tCn = −i(Sn)
−1[(Hn − iṠn)Cn +

�

m �=n

HnmCm]

Sn,ij = �χni|χnj�
Ṡn,ij = �χni|∂tχnj�
Hnm,ij = �χni|�ψn|Ĥ|ψm�|χmj�
‘Spawn’ additional nuclear basis functions in order to represent new branches 
of the total wavefunction whenever 

|Ṙ · dnm|
exceeds a chosen critical value 

Ben-Nun and Martinez Adv Chem Phys 121 439 (2002) 



Example 

Six-dimensional (three-atom, excluding COM) test 
calculation with two electronic states 

Trajectory spawnings occur in same 
region as surface hops 

Hack et al. J Chem Phys 115 1172 (2001) 



Example (2) 
Propanal cation CH3-CH2-CHO+ shows very different 
dissociation dynamics for different isomers 

Kim et al. Science 315 1561 (2007) 



Advantages and disadvantages 

•  Advantages 
–  Explicit treatment of 

electron/nuclear 
correlations 

–  Spawning focuses 
computational effort in 
regions of large non-
adiabatic coupling 

•  Disadvantages 
–  Large number of 

nonorthogonal nuclear 
basis functions 
required, separate 
solution of electronic 
problem along each 
trajectory 

–  Many parameters to 
tune/set 



Beyond Ehrenfest?  Two classes of method 

•  Methods based on Born-Oppenheimer surfaces 
–  Surface hopping 
–  ‘Frozen gaussians’ and ‘ab initio quantum molecular 

dynamics’ 
•  Methods based on semiclassical expansions for 

equations of motion or correlation functions 
–  Mixed quantum-classical dynamics 
–  (Ring polymer dynamics) 



Aims of method – the CEID idea 

•  Retain 
–  Correlations between electrons and nuclei 
–  The idea of making expansion about the Ehrenfest 

trajectory 
•  Avoid 

–  Giving preferred role to adiabatic (Born-Oppenheimer) 
states 

–  Making assumptions about loss of phase coherence 
with time 

 



Aside – two types of decoherence 
A superposition such as 

|Ψ� =
�

n

cn(t)|ψn(Rn)� ⊗ |χ(Rn)�

will tend to decay as a result of interactions with the wider 
environment:  

|Ψ��Ψ| =
�
�

n

cn(t)|ψn(Rn)� ⊗ |χ(Rn)�
��

�

m

c∗m(t)�ψm(Rm)|⊗ �χ(Rm)|
�In addition the entire density operator 

|Ψ��Ψ| →
�

n

|cn(t)|2|ψn(Rn)��ψn(Rn)|⊗ |χ(Rn)��χ(Rn)|

does not correspond to a pure state of either ions or electrons; e.g. if 
different χ states are orthogonal,  
ρ̂e = Tre|Ψ��Ψ| =

�

n

|cn(t)|2|ψn(Rn)��ψn(Rn)|
Decoherence of electron system through its 
interaction with the ions 

Decoherence of entire simulation system through interactions with the rest of the world 



CEID moments – concepts and equations 
Expand the full Hamiltonian to second order in the nuclear 
displacements about the instantaneous R and P: 

NOT a usual harmonic approximation because F and K 
depend on R and P 

Ĥ ≈ Ĥe,eff(R) +
�
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2
�
−

�

I
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�

IJ

K̂IJ(R)∆R̂I∆R̂J

Retain correlations between electrons and ions by evolving moments of 
the fluctuations ΔR and ΔP along the Ehrenfest trajectory: 
F = Tre !̂eF̂el (R)!
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Example – inelastic Spectroscopy 

Even though it starts from a classical path, CEID (at first 
moment level) already contains the standard selection rules 
for electron-phonon scattering and hence enough information 
to describe IETS 

Sanchez, Todorov, 
Horsfield 

Expected position of 
inelastic peak: 0.26 V 



When moments are not enough 

•  Problem: difficult to describe situations in which 
electron state is strongly coupled to a small 
number of vibrational degrees of freedom 
–  Manifests itself in poor convergence 

•  Reason: a broad probability distribution is not 
necessarily well described by its moments: 
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A simple strongly coupled system - example 

Occupation probabilities for ground 
and excited states in case where 
potential surfaces have an avoided 
crossing: 

-‐ 2 -‐ 1 1 2
R

0.5

1

1.5

2

2.5

3

Energy

CEID results: 

N=2 

N=10 

Exact results for 
occupation probabilities: 



CEID with a basis 

Alternative idea: construct an explicit representation of the full density 
operator in an orthonormal nuclear basis 

ρ̂ =
�

m,n

|m�ρ̂mn�n|

where 
ρ̂mn = �m|ρ̂|n�

is still an operator on the electronic degrees of freedom 

Similarly for operators: 

Ô =
�

m,n

|m�Ômn�n|

For electronic 
operators:  

Ômn = Ôeδmn Ômn ∝ 1̂e
For nuclear 
operators: 



In the full basis-set limit corresponds to an exact solution of the 
coupled electron-nuclear problem, and is therefore exponentially hard.   

Q: How can we avoid exponential scaling and make use of the semi-classical 
nature of the nuclei? 

A: Move the basis with the Ehrenfest trajectory, in order to 
represent the fluctuations about it 

ρ̂mn = ρ̂mn(R)

|n� = |n(R)�

Choosing the basis set 



Transforming to the co-moving frame 

Corresponds to transformation to an effective Lagrangian coordinate system  

∆R̂(t) = R̂−R(t)
∆P̂(t) = P̂−P(t)

Transformation defined by the unitary operation 

Û(R,P) = exp[(RP̂−PR̂)/i�]
So for a general 
operator ÔL(R,P) = Û

†(R,P)ÔÛ(R,P)

Position and spatial components commute, so 
a classical transformation 



Constructing the basis 

Begin with a Gaussian wavepacket of width α centered at each 
atomic site: 

|0� = C
3N�

i=1

exp
�
−α2

i (Ri −Ri)
2/4

�

Define a set of modes (in principle arbitrary but in practice normal modes 
of a reference geometry are often the best choice) 

∆η̂α(t) =
�

β

Uαβ∆R̂β(t) ∆ζ̂α(t) =
�

β

U∗
αβ∆P̂β(t)

and define annihilation and creation operator algebra 

∆η̂α(t) =
i√
2
bα(âα − â†α) ∆ζ̂α(t) =

1√
2
aα(âα + â†α)

Length and momentum scales obeying 

aαbα = �



Constructing the basis (2) 

Then construct the CEID basis as 

|n1, n2, . . . n3N � =
3N�

i=1

(â†αi
)ni

√
ni!

|0�

truncating at a maximum number of excitations 
�

i

ni = NCEID

Exact in the limit  

In practice optimize by choosing a and b to minimize the quadratic 
energy and choosing a finite N 

NCEID → ∞



Equations of motion Nuclear kinetic energy (Δn, 
Δm=0 or 2) 

Fluctuations producing nuclear forces 
(gradient of Hamiltonian) 

Ehrenfest 
Hamiltonian 

Quadratic fluctuations of the same 
mode 

Quadratic fluctuations in different modes 

! 
Note presence of electronic operators (i.e. 

changing the electronic evolution) arising from 
coupling to the dynamics of the nuclei 



Notes 

NCEID → ∞

NCEID = 0

(a) In the limit 

get an exact solution of the coupled electron-nuclear problem 

(b) In the case 

recover an Ehrenfest-like calculation 



Relation to moment expansion 

Can recover a simple relation to the previous (moment 
expansion) version of CEID: 

µ̂n,m(t) =
1

2π�

�
dPdR∆Rn∆Pmρ̂W (R,P ) =

�

kl

An,m
kl ρ̂kl

where An,m
kl ≡ 1

2n

n�

r=0

�
n
r

�
�k|(∆R̂)r(∆P̂ )m∆R̂(n−r)|l�

These quantities can be simply evaluated via recurrence relations to 
give, for example 

µ̂1,0 = a0
�

n

�
n

2
[ρ̂n,n−1 + ρ̂n−1,n]

µ̂0,1 = −ib0
�

n

�
n

2
[ρ̂n,n−1 + ρ̂n−1,n]



Scaling of CEID 

Dimension of the Hilbert space needed to describe the ions: 

DI =
NCEID�

i=0

�
i+NC − 1

i

�
=

�
NC +NCEID

NC

�

In the highly quantum limit for all modes NCEID � NC

NC � NCEID

1

NC

�
NCEID

NC

�2NC

Effort is Exponential scaling 

For a minority of highly quantum modes 

1

NCEID

�
NC

NCEID

�2NCEID

Effort is Polynomial scaling of 
degree 2NCEID 



Advantages and disadvantages 

•  Advantages 
–  Representation of full 

coupled electron-nuclear 
state 

–  No special status to B-O 
states 

–  Systematically improvable 
–  Does not rely on 

decoherence from outside 
–  Possible to treat different 

degrees of freedom to 
different accuracy 

•  Disadvantages 
–  Not compatible with 

TDDFT in its present form 
–  No thermostat yet 
–  Scaling becomes worse 

as accuracy increased 
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