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Outline

« Some previous extensions to Ehrenfest:
— Mixed quantum-classical dynamics
— ‘Frozen gaussians’ and ‘ab initio quantum molecular dynamics’

* The CEID approach (Coherent Electron-lon Dynamics):
— Focusing on correlations
— Moment CEID
— polyCEID (motivation and introduction)
— Details and applications: following talk by Lorenzo Stella

 Qutlook and conclusions



Mixed quantum-classical dynamics (1)

Consider Wigner transform of a nuclear density operator p

pw (R, P) = hV [ dze®*/"(R — 2/2|p|R + 2/2)

and of a nuclear operator O

Ow (R,P) = 3N [dze " P%/"R +2/2|0R — 2/2)

So expectation value is

(0) = Tr[p0] = [ dRAPOw (R, P)pw (R, P)

and evolution (Schrodinger plcture) IS Moyal product
Orpw (R, P) = ——(HA,OW ,OWHA) = — = Hy * pw

— EA /9 — —
Hp = Hye"N2 gy =e"2gy, AZVRVP—VPVR



Mixed quantum-classical dynamics (2)

Key idea: make Wigner transform only with respect to nuclear variables. Keep
full guantum equation of motion for ‘light’ variables r and p, but for ‘heavy’
variables R and P truncate to lowest order in h:

N

Opw (R, P) = = [Hw, pw| + 5 {Hw, pw} — {pw, Hw })
Quantum commutator Classical Poisson bracket

Hw,pw| = Hwpow — pwHw {Hw, pw} = —Hw Apw

Nielsen, Kapral and Ciccotti J Chem Phys 112 6543 (2000)
Kapral Ann Rev Phys Chem 57 129 (2006)



Mixed quantum-classical dynamics (3)

In a basis of adiabatic states, equation of motion becomes

6)t,On"n,’ = —1 E Lnn’,mm’pmm’

mm/’

with the Liouvillian super-operator represented as

iﬁnn’,mm’ — (iwnn’ + iLnn’)5nm5n’m’ — Jnn’,mm’

P; 1 Classical evolution
1L, = E —~ .VRr, + —(FI .+ F; n,) . Vp, | withaverage force of
M 2 ’ ’ n and n’

1
P; 1 P; 1
nn’,mm’ — __'dnm 1 SPnm 5n’m’__'d*/ (1 =S 5nm
J , Vi ( + 25 VP> v Gnm + 2Snm VP)

Effect of transitions between quantum states

Commonly implemented by surface hopping (again): evolve forward through At
using L and consider transitions n=>m or n=»m’ with probability

P P 1



Advantages and disadvantages

* Advantages « Disadvantages
— Makes contact with — Systematic
surface hopping improvement difficult
approach — Representation of
— Natural recovery of coupled electron-ion
separate quantum and system not available
classical evolution — Large number of

trajectories required



Wavefunction propagation: ab initio multiple
spawning (AIMS) technique

Represent full wavefunction as

¥(r,R)= Z Vn (15 R)Xn (R, £)

with each x expanded as a sum of Gaussians: Phases ,
o N, (¢) Expansion coefficients Exponents (fixed)

Xn(Rot) = > Crj(t)xnj (R; Rnj, Prj, Yy i)
j=1
Xnj (R Ry Projy Yngs nj) ~ €777 exp|—anj(R—Ru;)° +iPy; - (R—Ro;) /7]

Basis function position centres and momenta initially chosen from Wigner
distribution and then propagated classically along with phases:

8tﬁnj,f — Pnj;j
atFnj,I — <¢7£(R)‘F1,ewn(R)> + Fnuc,f
P _ _
0ms =3 5y [Bn(Rang) + Vion(Rony)]
I




AIMS (2)

Propagate nuclear wavefunction expansion coefficients quantum
mechanically from the Schrodinger equation:

0:Cy, = —1(Sp) '[(Hn —182)Cn + »  HpmCh
Snij = (Xni|Xnj) e

Sn,ij = <Xm'|5tan> )
Hpmii = (Xnil (Un| H | Ym) [ Xmj)

‘Spawn’ additional nuclear basis functions in order to represent new branches
of the total wavefunction whenever

R - dp|

exceeds a chosen critical value

Ben-Nun and Martinez Adv Chem Phys 121 439 (2002)



Example

Six-dimensional (three-atom, excluding COM) test
calculation with two electronic states

Energy (eV)

Energy (eV)

0.35 F S8 SL L
0.30 0.0
§' F MX + H +— reaction coordinate —* M + XH
g 025
go.zo
20 Trajectory spawnings occur in same
§°"° 5 “ region as surface hops
0.05 ’—L
in
0.00 T T v T
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6/deg

Hack et al. J Chem Phys 115 1172 (2001)



Example (2)

Propanal cation CH;-CH,-CHO* shows very different
dissociation dynamics for different isomers

s
cis-CH,CH,CHO" gauche- CHCH,CHO" %
s

Population

Dy, gauche

0 10 20 30 4 S0 60 70 B0 10 20 30 40 50 60 70 80
Time / fs Time / fs

Kim et al. Science 315 1561 (2007)



Advantages and disadvantages

« Advantages

— Explicit treatment of
electron/nuclear
correlations

— Spawning focuses
computational effort in
regions of large non-
adiabatic coupling

« Disadvantages

— Large number of
nonorthogonal nuclear
basis functions
required, separate
solution of electronic
problem along each
trajectory

— Many parameters to
tune/set



Beyond Ehrenfest? Two classes of method

* Methods based on Born-Oppenheimer surfaces
— Surface hopping
— ‘Frozen gaussians’ and ‘ab initio quantum molecular

dynamics’

« Methods based on semiclassical expansions for
equations of motion or correlation functions
— Mixed quantum-classical dynamics
— (Ring polymer dynamics)



Aims of method - the CEID idea

 Retain
— Correlations between electrons and nuclei

— The idea of making expansion about the Ehrenfest
trajectory

 Avoid

— Giving preferred role to adiabatic (Born-Oppenheimer)
states

— Making assumptions about loss of phase coherence
with time



Aside — two types of decoherence

A superposition such as

U) = ca®)tn(Rn)) @ [x(Ry))

n

does not correspond to a pure state of either ions or electrons; e.q. if
different x states are orthogonal,

pe = Tre[UNW| = > [en(t)]*[thn(Rn))(¥n(Rn)

n Decoherence of electron system through its

interaction with the ions

In addition the entire density operator

W) (V| = [ch n(Ry)) ® [x(R > el m)| @ (x(Rn)|

will tend to decay as a result of interactions with the wider
environment:

U)W = D fen ()9 (Ra)) (¢ (Rn) | @ [x(Rn)) (X (Ron)]

Decoherence of entire simulation system through interactions with the rest of the world



CEID moments — concepts and equations

Expand the full Hamiltonian to second order in the nuclear
displacements about the instantaneous R and P:

I:I%I:Ieeﬁr +ZQMI [PI+2P] AP[—I— AP] } ZF] AR[—I—ZK]J )AR]ARJ
NOT a usual harmonic approximation because F and K
dependon Rand P

Retain correlations between electrons and ions by evolving moments of
the fluctuations AR and AP along the Ehrenfest trajectory:

F=Tr [pF(R)] ETr[ UMJ]

05 - B with p, = Tr, [ p(1)] and
== ARLp -3 F. R i, =1, %,0]
di A=y a1 A b =Tr,[£p]
lhd—t1= He(R)’MI]HhﬁII Aﬁjsﬁ][—};

dA, [ =y 21 dh(n A iie(s -
1hd—t’=_He(R),)LI]+1E{AF,,0€}—%E{KU,MJ}




Example — inelastic Spectroscopy

Even though it starts from a classical path, CEID (at first
moment level) already contains the standard selection rules
for electron-phonon scattering and hence enough information
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When moments are not enough

* Problem: difficult to describe situations in which
electron state is strongly coupled to a small
number of vibrational degrees of freedom
— Manifests itself in poor convergence

 Reason: a broad probability distribution is not
necessarily well described by its moments:



A simple strongly coupled system - example

Occupation probabilities for ground
and excited states in case where
potential surfaces have an avoided
crossing:

Energy

3k
25
2k

L5}
1k

:\\\\\\“ﬁ~.___,,_—”' 1 2
Exact results for
occupation probabilities:
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CEID with a basis

Alternative idea: construct an explicit representation of the full density
operator in an orthonormal nuclear basis

P = § M) P (11|
m,n
where R .
Pmn = (M|p|n)
is still an operator on the electronic degrees of freedom
Similarly for operators:

O =Y |m)Omn(n|

For electronic O - O 5 For nuclear O x i
— : mn e
operators: mn ermn operators:



Choosing the basis set

In the full basis-set limit corresponds to an exact solution of the
coupled electron-nuclear problem, and is therefore exponentially hard.

Q: How can we avoid exponential scaling and make use of the semi-classical
nature of the nuclei?

A: Move the basis with the Ehrenfest trajectory, in order to
represent the fluctuations about it




Transforming to the co-moving frame

Corresponds to transformation to an effective Lagrangian coordinate system
AR(t) =R — R(t)
AP(t) =P —P(t)

Transformation defined by the unitary operation

A —_—

U(R,P) = exp[(RP — PR)/i}]

— — A AN — —

So for a general O.(R,P) =U'R,P)OU(R,P)

operator

Position and spatial components commute, so
a classical transformation



Constructing the basis

Begin with a Gaussian wavepacket of width a centered at each
atomic site:

— C’Hexp [—ai (R; — R;)? /4]

Define a set of modes (in principle arbitrary but in practice normal modes
of a reference geometry are often the best choice)

Aia(t) = Y UasARa())  Alalt) =Y UsgAPs(1
and define anﬂnihilation and creation operator algebra
' . . A 1
Afa(t) = —=ba (@0 — ) Ala(t) = —=aq (Ga + al)

V2 V2

Length and momentum scales obeying

anb, = h



Constructing the basis (2)

Then construct the CEID basis as
(al, )™
]nl, no, ... n3N> — H

1=1

0)

truncating at a maximum number of excitations

E n; = NcEID
;

Exactin the limit ~ Ncogpp — 00

In practice optimize by choosing a and b to minimize the quadratic
energy and choosing a finite N



Equations of motion Nuclear kinetic energy (an,

Am=0 or 2
) Ehrenfest

Zbi [\/(”u + 2)(ng + Dpony2,.m — 2ng + 1)pp.m + vVoog(ne — 1)pn—2,.m Hamiltonian

- 4M()Iﬁ

1 _
—mg(mg — Vppm-2, + 2mg + Dpum — /(g + 2)(my + l)pn.m+?_¢,:| + h [H(CD, on,m]
n

] _
- Zu IAF (()(V pn+l .m + AV o Pn— | P m (\/’”upn.m—lu + \ Mg + lpn.m+l‘,)AFu(C)]

F!uctuat:cns producing nuclear forces
(gradient Of Hamiltor"an) ..m = (2”u = l)pn.m T ”u(”u )pn— m)

Note presence of electronic operators (i.e. ¢ )]
changing the electronic evolution) arising from

coupling to the dynamics of the nuclei m

+ \/”u(”ﬂ =1 l)/)n—lu+l,.-:.m + A/ ”u”ﬂpn—lu—l,i.m) — (\/ ’"u’”ﬂpn.m—lu—lﬂ = \/’nu(’”ﬁ + l)pn.in—lu-%lf,'
+ \/("101 + l)"zﬁp”-"“rlu—l;i + \/(’nu + l)(’nﬂ + l)pn.m+lu+l_,.;)ku.ﬁ(E)L

Quadratic fluctuations in different modes



Notes

(a) In the limit Nogp — 00

get an exact solution of the coupled electron-nuclear problem

(b) In the case NCEID =0

recover an Ehrenfest-like calculation



Relation to moment expansion

Can recover a simple relation to the previous (moment
expansion) version of CEID:

A~ 1 n m A~ n,m -
finm(t) = 5— | APARAR"AP™pw (R, P) = ) | A" b
kl

n

1 A . .
where AL™ = on Z ( 7;’ ) (k|(AR)"(AP)Y™AR™ |1
=0

These quantities can be simply evaluated via recurrence relations to
give, for example

MlO—aOZ\/>pnn 1+ Pn—1.n]
MOl—_lbOZ\/>pnn 1+ Pn—1.n]



Scaling of CEID

Dimension of the Hilbert space needed to describe the ions:

D_NCEID 1+ Nc—11\ [ Nc+ Ncem
f_; 0 - Nc

In the highly quantum limit for all modes NcEIp > N¢

2N
| I ([ Ncemw . e
Effort is Ne Ne xponential scaling

For a minority of highly quantum modes N¢ > Ncgp

| 1 Ne 2NcEID
Effort is ( ) Polynomial scaling of

Ncem \ Ncem degree 2Nqgp




Advantages and disadvantages

* Advantages

Representation of full
coupled electron-nuclear
state

No special status to B-O
states

Systematically improvable

Does not rely on _
decoherence from outside

Possible to treat different
degrees of freedom to
different accuracy

* Disadvantages

— Not compatible with
TDDFT in its present form

— No thermostat yet

— Scaling becomes worse
as accuracy increased
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