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THE PROBLEM:  
NUCLEI AND ELECTRONS INTERACTING VIA COULOMB FORCES 

 Hamiltonian of the universe 
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 Schrödinger equation: 

  r={ri }  i=1,...,N 

  R={RI }  I=1,...,P 

 



ADIABATIC APPROXIMATION 

 Adiabatic expansion: 

 

 Electronic Hamiltonian: 

 

 Electronic Schrödinger equation: 

 

 Replacing into TD-Schrödinger: 
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d= Non-adiabatic couplings 

Describe non-radiative transitions 

originated in the nuclear motion 



ADIABATIC APPROXIMATION 

 Condition for adiabaticity: 

 

 v = frequency of rotation of the electronic wave function due to 

nuclear motion 
 

 For m/M~5x10-4 (proton), vibrational energies (ћv~0.01 eV) are 

two orders of magnitude smaller than electronic excitation 

energies (E~1 eV)  

Adiabatic electronic eigenstates do not mix 

 
 

 does not change in time, e.g. =0 (Ground State) 
 

 Adiabatic Schrödinger equation: 
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ADIABATIC APPROXIMATION 

 Time scale associated to the motion of the nuclei much slower 
than that of electrons → Electrons follow instantaneously the 
nuclear motion, without changing electronic eigenstate. 

 

 Non-adiabaticity: along the dynamical evolution, two (or more) 
electronic levels can get very close, so that E ћv , and the 
adiabatic approximation breaks down. 
 

 

 

 

 

 

 

 
 

 This can also happen because nuclear motion is very fast, 
e.g. swift ions.  
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CLASSICAL NUCLEI APPROXIMATION 

 At room T: T  0.1 Å 

 No phase coherence beyond 

 
 

 Nuclear wave function can be approximated as a Hartree product: 

 

 
 

 Nuclei are generally quite well localized. The larger the mass, the 

better localized they are   

Nuclei can be considered classical particles 

 

 Ehrenfest theorem: 

 

 

 

 

~ 1 Å 

~ 0.1 Å 
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CLASSICAL NUCLEI APPROXIMATION 

 Leads to Newton-like equations: 

 

1. Nuclear wave function approximated as a product of -functions, 

centred at the classical position: RI
(c)(t) 

 
 

 

2. Expectation value of the force approximated as the gradient of 

the potential energy surface (PES) at the classical position 

 
 

 

Strictly valid only for -functions or harmonic potentials 

 

 In some situations, e.g. spontaneous phonon emission, 

electronic transitions require quantum nuclei (A. Fisher) 
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SUMMARY 

 This leads to: 

 

 and: 

 

 

 Both, geometry optimization and first-principles MD require the 

solution of the time-independent Schrödinger equation for 

a system of N interacting electrons in the external 

Coulomb field of the nuclei 

 

 

 

Electronic structure 

A quantum many-body problem 
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PHYSICAL ORIGIN OF MANY-BODY EFFECTS:  

CORRELATION 

 Electrochemical cell: charge in the electrodes depends on the 

potential difference (Gouy-Chapman, 1901-1913) 

 

 Two concepts 

1. Screening length 

2. Plasma frequency 
 

 Many-body: electrons interact with each other 
 

 Electrostatic potential generated by electrons verifies Poisson’s 

equation: 

 

 

 

 Pair correlation function: 

 

 

 neeneeVH  )()(4)(2
rrr 

e- at origin other e- neutralizing background 

nng /)()( rr 



Exclusion zone 
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 Poisson’s equation: 

 

 

 

 

 

 

 

 

The presence of an electron discourages the other electrons 

from approaching it: CORRELATION 
 

 g(r) is the probability of finding two electrons at a distance r.  

 

 

 

 

 

 

PHYSICAL ORIGIN OF MANY-BODY EFFECTS:  

CORRELATION 



 

 Classical liquid (Boltzmann):  

 

 Linearizing:  

 

 Replacing g(r) into Poisson’s equation   linearized Poisson-

Boltzmann: 

 

 

 

 Screened Coulomb interaction: 

 

 

 Debye-Hückel screening length: 

 

 

PHYSICAL ORIGIN OF MANY-BODY EFFECTS:  

CORRELATION 
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Test charge q 

Displaced charge n(r) 

 

 Quantum (electron) liquid: 
 

 Electric field interacts with q  

 

 

 
 

 If q is just one electron amongst the others, then it is not a test 

charge anymore, and will displace some charge n(r) [static 

screening charge] to make space for itself. 
 

 Electron-electron interaction: 

 

 

PHYSICAL ORIGIN OF QUANTUM MANY-

BODY EFFECTS: SCREENING 
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 Replacing into Schrödinger equation: 

 

 

 

 

 

 

 

 Pauli principle:                                         (self-consistency) 

 
 

1. Fermi-Dirac statistics  Exchange (statistical correlation) 

2. Non-statistical correlations 
1. Static: electrons spatially separated (multi-configuration, left-right) 

2. Dynamic: fluctuations in electronic density (Van der Waals) 

 

 

PHYSICAL ORIGIN OF QUANTUM MANY-

BODY EFFECTS: SCREENING 
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 Random Phase Approximation (RPA): 

 

 

 

 Dielectric function (in reciprocal space): 

 

 

 In the RPA (Lindhard):  

 

 

1. Thomas-Fermi (small k) 

 

2. k→2kF: Friedel oscillations at long distance  

 

 

 

 

THE HOMOGENEOUS ELECTRON GAS (HEG)  

(JELLIUM) 
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 Many-electron problem: 
 

 

 Hartree product (uncorrelated):  

 

 Replacing into Schrödinger’s equation: 

 

 

 

 

WAVEFUNCTION APPROACHES IN  

QUANTUM CHEMISTRY 
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 Hartree-Fock  (Exchange only): Slater determinant 

 

 

 

 

 

 

 Hartree-Fock equations: 

 

 

 

 

WAVEFUNCTION APPROACHES: 

HARTREE-FOCK 
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 Total energy: 

 

 

 

 

 

 

 

 To introduce Static and Dynamical Correlation: 

1. Møller-Plesset perturbation theory on HF wave function: MP2, 

MP4, Coupled-clusters (re-summation to ∞ order): CCSD(T) 

2. Configuration interaction (CI): 

CISD(T) 

3. Multi-reference methods: CASSCF, CASMP2, MR-CI  

 

 

 

 

WAVEFUNCTION APPROACHES: 

HARTREE-FOCK AND BEYOND 

Coulomb integrals Exchange integrals 
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 Electron-electron interaction: 

 

 

 

 

 Total energy: 

 

 

 

 

 External: 

 

 Kinetic: 

 

 

 

 

 

 

 

 

 

 

 

ELECTRON-ELECTRON INTERACTION: 

GENERAL 

Direct Coulomb (Hartree) Pair correlation function 
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Functional minimization 

 

 Thomas-Fermi (1927): Approximation for the kinetic energy 

from the homogeneous electron gas. 

 

 

 

 

 Minimizing the functional with respect to (r), under the 

constraint that (r) integrates to N, we obtain an integral 

equation for (r): 

 

 

 

 

 

 

DENSITY FUNCTIONAL THEORY (DFT): 

THE ANCESTORS 
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 Hohenberg-Kohn theorem (1964): Two external local 

potentials differing only in an additive constant, correspond to the 

same electronic density 

 

 V-representability (Levy 1982): Not any density is allowed. It 

must arise from some external potential  constrained search 

 

 Minimum principle:                                                   is minimum 

for GS = ground state density. 

 

 Variational equations: 

 

 

 

DENSITY FUNCTIONAL THEORY (DFT): 

MODERN THEORY 
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 HK theorem is valid for any e-e interaction U, including the full 

Coulomb interaction, and also U=0, corresponding to non-

interacting electrons. 
 

 Non-interacting reference system (R): a system of non-

interacting electrons, i.e. UR=0,  with the same density  of the 

system of interacting electrons (U=Vee). 

 

 
 

 The reference orbitals correspond to non-interacting electrons. 

Therefore, they are solutions of the Schrödinger equation in 

an effective, reference “external” potential VR[](r): 

 

DENSITY FUNCTIONAL THEORY (DFT): 

NON-INTERACTING REFERENCE SYSTEM 
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 The reference orbitals n
R(r) are implicit functionals of the 

electronic density.  
 

 Energy of non-interacting electrons: 

 

 

 Non-interacting kinetic energy known explicitly: 

 

 

 

 Any functional of the reference orbitals is, implicitly, a 

functional of the electronic density via the mapping: 

DENSITY FUNCTIONAL THEORY (DFT): 

NON-INTERACTING REFERENCE SYSTEM 
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 For the interacting system, define the Exchange-Correlation 

functional as: 

 

 

 Which is different (TR[] ≠ T[] ) from 

 

 

 

 The HK variational energy functional is, then: 

 

 

 

 Thomas-Fermi methods approximate also TR[] 

 

 

 

 

DENSITY FUNCTIONAL THEORY (DFT): 

EXCHANGE-CORRELATION 
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 Kohn-Sham (1965): Use exact kinetic functional for reference 

orbitals and approximate EXC[] 
 

 Minimizing Ev[] with respect to : 

 

 

 
 

 With the exchange-correlation potential defined as: 

 

 Using the relation (always valid): 

 

 We find that the reference potential coincides with the Kohn-

Sham potential 

DENSITY FUNCTIONAL THEORY (DFT): 

KOHN-SHAM METHODS 
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 Kohn-Sham equations: 

 

 

 

 

 

 

 where interacting and Kohn-Sham electronic densities are 

enforced to be equal 
 

 This leads to a partial differential equation that has to be solved 

self-consistently, as the KS potential depends on the 

density, which is constructed with the solutions of the KS 

equations. 

DENSITY FUNCTIONAL THEORY (DFT): 

KOHN-SHAM EQUATIONS 
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 Observations regarding Kohn-Sham equations: 

1. The true interacting many-body wave function is not a Slater 

determinant of the KS orbitals. 
 

2. The electronic density constructed with the KS orbitals is, by 

construction, the same as that from the true wave function. 
 

3. EXC[] must contain kinetic correlations absent in TR[] 
 

4. The non-interacting reference systems does not necessarily exist 

with integer occupations of the KS orbitals. This is cured by 

extending the domain of definition of occupation numbers 

{fn} to any real number between 0 and 1. 
 

5. Janak’s theorem (I=-=-max) is valid. 
 

6. Koopman’s theorem (E=E(N+1)-E(N)≠ N+1 -N) is not valid, but 

Slater’s SCF method works out very nicely. 

DENSITY FUNCTIONAL THEORY (DFT): 

KOHN-SHAM EQUATIONS 
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 How to obtain EXC that includes kinetic correlations? 
 

 Start from the non-interacting systems and switch gradually the 

Coulomb interaction, always maintaining the same density 

 

 

 

 

 

 

 

 

 In practice, EXC is obtained as the difference: 
 

 Exchange: no -average 

 

 

 

 

 

 

 

DENSITY FUNCTIONAL THEORY (DFT): 

ADIABATIC CONNECTION 
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Taken from “exact” QMC calculations 



 Coupling constant averaged pair correlation function: 

 

 

 Exchange-correlation hole: 

 

 

 Sum rules:  

 Exchange hole contains one missing electron  

 Correlation hole integrates to 0 

 Symmetry:  

 Normalization 

 Should cancel self-interaction 

 

 

 

 

 

DENSITY FUNCTIONAL THEORY (DFT): 

EXCHANGE-CORRELATION HOLE 
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 The inhomogeneous electron gas is considered as locally 

homogeneous: 

 

 

 

 

 

 

 

 

 LDA XC hole centred at r, interacts with the electron also at r. 

The exact XC hole is centred at r’ 

 This is partially compensated by multiplying the pair correlation 

function with the density ratio (r)/(r’) 

 

 

 

 

 

 

 

 

EXCHANGE AND CORRELATION IN DFT:  

THE LOCAL DENSITY APPROXIMATION (LDA) 
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 Location of the XC hole (Jones and Gunnarsson, 1982) 

 

 

 

 

 

 

 

EXCHANGE AND CORRELATION IN DFT:  

THE LOCAL DENSITY APPROXIMATION (LDA) 



 Favors more homogeneous electron densities 

 Overbinds molecules and solids (Hartree-Fock underbinds) 

 Geometries, bond lengths and angles, vibrational frequencies 

reproduced within 2-3% 

 Dielectric constants overestimated by about 10% 

 Bond lengths too short for weakly bound systems (H-bonds, VDW) 

 Correct chemical trends, e.g. ionization energies 
 

 Atoms (core electrons) poorly described (HF is much better) 

 XC potential decays exponentially into vacuum regions. It should 

decay as –e2/r. Hence, it is poor for dissociation and ionization 

 Poor for metallic surfaces and physisorption 

 Very poor for negatively charged ions (self-interaction error) 

 Poor for weakly bound systems: H-bonds (), VDW (non-local) 

 Band gap in semiconductors too small (~40%) 

 Poor for strong on-site correlations (d and f systems, oxides, UO2) 

 

 

 

 

 

 

 

 

LDA-LSDA: TRENDS AND LIMITATIONS 



 Inhomogeneities in the density 

 Self-interaction cancellation 

 Non-locality in exchange and correlation 

 Strong local correlations 

 

 Gradient expansions 

 Weighted density approximation 

 Exact exchange in DFT (OEP local vs HF non-local) 

 DFT-HF hybrids 

 Self-interaction correction 

 Van der Waals and RPA functionals 

 LSDA+U 

 Multi-reference Kohn-Sham 

 GW approximation (Many-body) 

 

 

 

 

 

 

 

 

BEYOND THE LDA 



 EXC expanded in gradients of the density 

 

 
 

where  is the spin polarization  

s=||/2kF is the density gradient 

And FXC is the enhancement factor 
 

 First-order term is fine, but higher-order terms diverge. Only by 

some re-summation to ∞-order the expansion converges. 

 GGA: FXC is designed to fulfil a number of exactly known 

properties, e.g. Perdew-Burke-Ernzerhof (PBE) 

1. Exchange: uniform scaling, LSDA limit, spin-scaling 

relationship, LSDA linear response, Lieb-Oxford bound  

2. Correlation: second-order expansion, hole sum rule, vanishes 

for rapidly varying densities, cancels singularity at high densities 

GRADIENT EXPANSIONS: 

GENERALIZED GRADIENT APPROXIMATION 
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 Improves atomization and surface energies 

 Favors density inhomogeneities 

 Increases lattice parameters of metals 

 Favors non-spherical distortions 

 Improves bond lengths 

 Improves energies and geometries of H-bonded systems 

 There is error cancellation between X and C at short range 
 

 XC potential still decays exponentially into vacuum regions 

 Some improvement in band gaps in semiconductors  

 What was correct in LDA is worsened in GGA 

 Still incorrect dissociation limit. Fractionally charged fragments 

 Inter-configurational errors in IP and EA 

 Error cancellation between X and C is not complete at long-range. 

X hole is more long-ranged than XC hole 

 

 

 

 

 

 

 

 

 

PROPERTIES OF THE GGA 



 Combine GGA local exchange with Hartree-Fock non-local 

exchange: 

 

 

 Parameter  fitted to experimental data for molecules (~0.75), or 

determined from known properties. 

 PBE0, B3LYP, HSE06 
 

 Properties: 

1. Quite accurate in many respects, e.g. energies and geometries 

2. Improve on the self-interaction error, but not fully SI-free 

3. Improve on band gaps 

4. Improve on electron affinities 

5. Better quality than MP2 

6. Fitted hybrids unsatisfactory from the theoretical point of view 

 

HYBRID FUNCTIONALS 
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 Self-interaction can be removed at the level of classical 

electrostatics: 

 

 

 

 

 

 

 Potential is state-dependent. Hence it is not an eigenvalue 

problem anymore, but a system of coupled PDEs 

 Orthogonality of SIC orbitals not guaranteed, but it can be 

imposed (Suraud) 

 Similar to HF, but the Slater determinant of SIC orbitals is 

not invariant against orbital transformations 

 The result depends on the choice of orbitals (localization) 

 

 

 

 

 

 

 

SELF-INTERACTION CORRECTION (SIC) 
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 Van der Waals (dispersion) interactions: are a dynamical 

non-local correlation effect 
 

 Dipole-induced dipole interaction due to quantum density 

fluctuations in spatially separated fragments 

 

 

 Functional (Dion et al 2004): 

 

 
 

 Expensive double integral 

 Efficient implementations (Roman-Perez and Soler 2009) 

 Good approximations based on dynamical response theory 

 Beyond VDW: Random Phase Approximation (Furche) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VAN DER WAALS FUNCTIONALS 

1(r,t) 2(r,t) 

1(t) E1(t).2(t) 

 ')'()',()( rrrrrr ddEVDW   = VDW kernel fully non-local. 

Depends on (r) and  (r’) 



 Strong onsite Coulomb correlations are ot captured by LDA/GGA 

 These are important for localized (d and f) electronic bands, where 

many electrons share the same spatial region: self-interaction 

problem 

 

 Semi-empirical solution: separate occupied and empty state by an 

additional energy U as in Hubbard’s model: 

 

 

 

 This induces a splitting in the KS eigenvalues: 
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SUMMARY OF DFT APPROXIMATIONS 


