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THE PROBLEM:

NUCLEI AND ELECTRONS INTERACTING VIA COULOMB FORCES

Hamiltonian of the universe O O
O
H=T,+V,,«T,) @
1 ® ® ®
h? &
‘?EM_. ® O
e’ e Z,Zy O O
Vnn _? Iﬂ; RI RJ |
Y
h2 N ) e N e N P 7
Te T oM Vi Vne = 5 I
2m i=1 2 i=1 j;tl | 2 ;;“} —R| |
Schrodinger equation:
_ O¥(r,R:t r—{ri} 1=1 ..,N
Vi ( ) = HT(I", R;t) R:{R| } |= ..,P




ADIABATIC APPROXIMATION

o Electronic Schrodinger equation: _

o Replacing into TD-Schroédinger:

Y

d,s= Non-adiabatic couplings ’
Describe non-radiative transition
originated in the nuclear motion




ADIABATIC APPROXIMATION
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Condition for adiabaticity: <<1

Q, = frequency of rotation of the electronic wave function due to
nuclear motion

For m/M~5x10- (proton), vibrational energies (72Q2,~0.01 eV) are
two orders of magnitude smaller than electronic excitation
energies (AE~1 eV) =

Adiabatic electronic eigenstates do not mix

Y(r,R;t)=0_(R;t)®_(r;R)

a does not change in time, e.g. a=0 (Ground State)

Adiabatic Schrodinger equation:
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ADIABATIC APPROXIMATION

Time scale associated to the motion of the nuclel1 much slower
than that of electrons — FElectrons follow instantaneously the
nuclear motion, without changing electronic eigenstate.

Non-adiabaticity: along the dynamical evolution, two (or more)
electronic levels can get very close, so that AEx AQ) , and the
adiabatic approximation breaks down.
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This can also happen because nuclear motion is very fast,
e.g. swift ions.




CLASSICAL NUCLEI APPROXIMATION

At room T: szO.lA :i:l»A

No phase coherence beyond

N
v

~1A
Nuclear wave function can be approximated as a Hartree product:
0,RiD=]6,(R,,R®;t)
AC energy density of the HEG |

Nuclei are generally quite well localized. The larger the mass, the
better localized they are =

Nuclei can be considered classical particles
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Ehrenfest theorem: |iz
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CLASSICAL NUCLEI APPROXIMATION

2
Leads to Newton-like equations: M, d Cftlj' > — _<V| Ea(R)>

Nuclear wave function approximated as a product of 5-functions,
centred at the classical position: R, ()

0,(R;) =] [6(R, -R? (1))

Expectation value of the force approximated as the gradient of
the potential energy surface (PES) at the classical position

OE,(R}")

<VI Ea(R)> ~ v| Ea(REC)) = aR(C)
|

Strictly valid only for 5~functions or harmonic potentials

In some situations, e.g. spontaneous phonon emission,
electronic transitions require quantum nuclei (A. Fisher)



SUMMARY

. . d’R( - First-principles (quantum)
This leads to: M dt? =-V,E,(R}") Molecular Dynamics
and: V,E (R®)=0 Geometry optimization

Both, geometry optimization and first-principles MD require the
solution of the time-independent Schrodinger equation for

a system of N interacting electrons in the external
Coulombd field of the nuclei

hao (rR)=E (R9)® (r;R9)

FElectronic structure

A quantum many-body problem



PHYSICAL ORIGIN OF MANY-BODY EFFECTS:
CORRELATION

Electrochemical cell: charge in the electrodes depends on the

potential difference (Gouy-Chapman, 1901-1913)

Two concepts
Screening length
Plasma frequency

Many-body: electrons interact with each other

Electrostatic potential generated by electrons verifies Poisson’s

equation:
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Pair correlation function:
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neutralizing background

g(r)=n(r)/n




PHYSICAL ORIGIN OF MANY-BODY EFFECTS:
CORRELATION

Poisson’s equation: VZVH (r)= _Ae? {5 (r)+n[g(r) —1]}

Exclusion zone
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The presence of an electron discourages the other electrons
from approaching it: CORRELATION

g(r) 1s the probability of finding two electrons at a distance r.



PHYSICAL ORIGIN OF MANY-BODY EFFECTS:
CORRELATION

Classical liquid (Boltzmann): |g(r)=exp(-V,(r)/ksT)

Linearizing: g(r) ~ 1—VH (r) / kBT

Replacing g(r) into Poisson’s equation = linearized Poisson-
Boltzmann:

VAV, (r) =—47e* 5(r) + IziVH (r)

DH

2
Screened Coulomb interaction: [V, (r) = e—eXp (—-r/lyy)
I

Debye-Hiickel screening length:  |lpy




PHYSICAL ORIGIN OF QUANTUM MANY-
BODY EFFECTS: SCREENING

Quantum (electron) liquid:

Electric field interacts with g

5 Ze J-( e)n(r }

Eq(r):q{n —R 1 =

n(r)

, then 1t 1s
charge anymore, and will displace some charge én(r) [static
screening charge] to make space for itself.

If g is just one electron amongst the others,

Electron-electron interaction:
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PHYSICAL ORIGIN OF QUANTUM MANY-
BODY EFFECTS: SCREENING

Replacing into Schrodinger equation:

{_ 72 V2 _ZP: Z,€’ +ezj n(r') dr'+EZI on(r') dr':|gpn(|’; R)=¢ (R)o,(r;R)
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Nuclei Classical electrostatics Correlation

N
Pauli principle: |[n(r;R)= Z| o, (rR) [ (self-consistency)
=1

Fermi-Dirac statistics = Exchange (statistical correlation)

Non-statistical correlations
Static: electrons spatially separated (multi-configuration, left-right)
Dynamic: fluctuations in electronic density (Van der Waals)




THE HOMOGENEOUS ELECTRON GAS (HEG)
(JELLIUM)

Random Phase Approximation (RPA):

mk: j.(2ke |r—r')
n(r)=———= |V, (r)+—= dr'
(r) =5 e [V (1) 25—
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Dielectric function (in reciprocal space): [V, (K)= 4:\29
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In the RPA (Lindhard): [&(K) 22 { ” [sz J 2k, }
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Thomas-Fermi (small k) |V, (K) ~ ———5 3V, (r) ~ —eXp(—kcI)
K*+kre r

k—2ky: Friedel oscillations at long distance



WAVEFUNCTION APPROACHES IN
QUANTUM CHEMISTRY

Many-electron problem: h@,(r;R)=E,(R)®,(r;R)

N
Hartree product (uncorrelated): | @ (I;R) = H @, (r;R)
=]

Replacing into Schrodinger’s equation:

{—h—zvz +Vp (r; R)} ?,(rR)=¢,(R)p,(rR)

2m
N
2.p;(rR) Self-
VO (rR) =V, (r;R) +I = dr interaction
[r—ri removed

N Electronic
DY\ _ . 2 e _
p;(rR) = o, (R |o(r;R) = szllp,- (GR)|  density




WAVEFUNCTION APPROACHES:
HARTREE-FOCK

o Hartree-Fock (Exchange only): Slater determinant

o Hartree-Fock equations:  Self-interaction free, no correlation




WAVEFUNCTION APPROACHES:
HARTREE-FOCK AND BEYOND

artiree 1 - -
Total energy:  |EN*"*(R) = Ze (R)—EZZJJK

j=1 k=1
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To introduce Static and Dynamical Correlation:

Moller-Plesset perturbation theory on HF wave function: MP2,
MP4, Coupled-clusters (re-summation to o order): CCSD(T)

Configuration interaction (CI): @ (r,R)= Zci » SD{(Di r)---o (r
CISD(T) beesly

Multi-reference methods: CASSCF, CASMP2, MR-CI




ELECTRON-ELECTRON

INTERACTION:

GENERAL

Electron-electron interaction:
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Direct Coulomb (Hartree) Pair correlation function

Total energy:
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DENSITY FUNCTIONAL THEORY (DFT):
THE ANCESTORS

Thomas-Fermi (1927): Approximation for the kinetic energy
from the homogeneous electron gas.

Tie = [ tie[p] p(r) dr = j{——(&z)m Z’B}p(r)dch J P (rydr

Ere[p]=Cy [ p*(r)dr + [V, (r) p(r) dr += H—p(r)firl)drdr

Minimizing the functional with respect to p(r), under the
constraint that p(r) integrates to NV, we obtain an integral
equation for p(r): c . _ -
4 2 2/3 pr) .. p = electronic
_ ] 3Gk 0+ ext(r)+jlr_r r'= chemical potential
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E.[p]=-C, jp““(r)dr Dirac exchange
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E.[o] :_J‘ Ap*? I(B+ p"*)dr| Wigner correlation
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Von Weiszacker
T, == Vel /p)dr : :
Functional minimization | Lol 8 I(l Pl '0) gradient correction




DENSITY FUNCTIONAL THEORY (DFT):
MODERN THEORY

Hohenberg-Kohn theorem (1964): Two external local
potentials differing only in an additive constant, correspond to the

same electronic density
p(r) =V, (r),N

V-representability (Levy 1982): Not any density is allowed. It
must arise from some external potential = constrained search

Minimum principle: EV [p] :Te -|-Vext [p] + Eee [p] 1S minimum
for pog = ground state density.

Variational equations: 5lEV [p]- ,qu(r)dl’)J: 0

%] :vext(r)+éF[p] = Flpl=T.[pl+E.[A]
op(r) op(r)

A universal functional
(depends only on the interaction)



DENSITY FUNCTIONAL THEORY (DFT):
NON-INTERACTING REFERENCE SYSTEM

HK theorem is valid for any e-e interaction U, including the full
Coulomb interaction, and also U=0, corresponding to non-
interacting electrons.

Non-interacting reference system (R): a system of non-

interacting electrons, 1.e. Uy=0, with the same density p of the
system of interacting electrons (U=V,)).

Pr(r) :ZN_:

oF ()| = p(r)

The reference orbitals correspond to non-interacting electrons.
Therefore, they are solutions of the Schrodinger equation in
an effective, reference “external” potential Vy[p](r):

{_f_vz +V, [p](r)}oﬁ‘(r) =&, ¢, (1)
m




DENSITY FUNCTIONAL THEORY (DFT):
NON-INTERACTING REFERENCE SYSTEM

The reference orbitals ¢, R(r) are implicit functionals of the
electronic density.

Energy of non-interacting electrons:

ExLo]=Talol+ [Va(r)p(r) dr

Non-interacting kinetic energy known explicitly:

Telpl=2, | cﬂn*(r)(—f—mvzjwf (r)dr

Any functional of the reference orbitals is, implicitly, a
functional of the electronic density via the mapping:

p(r) = Velpl < ok (N Tilel



DENSITY FUNCTIONAL THEORY (DFT):
EXCHANGE-CORRELATION

For the interacting system, define the Exchange-Correlation

functional as: 7
E Lol = Flol— | "l(")j’('; arar (T, [p]i)

Which is different (Ty[p] # T[p] ) from

Eft Lol = Flol— | "l(r)_"";’drdd T[p]|)

The HK variational energy functional is, then:

£ L1 =Tole) + [Ver (1) p i+ [[ 202 o @»
|

Thomas-Fermi methods approximate also Ty[p] Only unknown terni
Fast, but not very accurate




DENSITY FUNCTIONAL THEORY (DFT):
KOHN-SHAM METHODS

Kohn-Sham (1965): Use exact kinetic functional for reference
orbitals and approximate Exq[p]

Minimizing E [p] with respect to p:

O — dEv[:o] — éTR[IO] +Ve

« (M) +Vy (r) + 1, [oI(r)

g(r)  oo(r)

I
Vs[pl(r) = Kohn-Sham potential

With the exchange-correlation potential defined as: |u,. [p](r) =

Using the relation (always valid): =-Vi[pI(r)

Ey:[A]
dp(r)

olelp]

9 (r)

We find that the reference potential coincides with the Kohn-

Sham potential

VrlLp](r) =Vis[p](r) =V, (1) +Vy, () + 115 [p](r)




DENSITY FUNCTIONAL THEORY (DFT):
KOHN-SHAM EQUATIONS

Kohn-Sham equations:

where interacting and Kohn-Sham electronic densities are
enforced to be equal

This leads to a partial differential equation that has to be solved
self-consistently, as the KS potential depends on the
density, which is constructed with the solutions of the KS
equations.



DENSITY FUNCTIONAL THEORY (DFT):
KOHN-SHAM EQUATIONS

Observations regarding Kohn-Sham equations:

The true interacting many-body wave function is not a Slater
determinant of the KS orbitals.

The electronic density constructed with the KS orbitals is, by
construction, the same as that from the true wave function.

Exc[p] must contain kinetic correlations absent in Ty[p]

The non-interacting reference systems does not necessarily exist
with integer occupations of the KS orbitals. This 1s cured by
extending the domain of definition of occupation numbers
{f,,} to any real number between 0 and 1.

oS ()|

p) =21,

Janak’s theorem (I=-py=-¢_,,) 1s valid.

Koopman’s theorem (4E=E(N+1)-E(N)# &, -&,) IS not valid, but
Slater’s ASCF method works out very nicely.



DENSITY FUNCTIONAL THEORY (DFT):
ADIABATIC CONNECTION

How to obtain Ey. that includes kinetic correlations?

Start from the non-interacting systems and switch gradually the
Coulomb interaction, always maintaining the same density

H,=T+V,,+AV,

Adiabatic connection

pp pp pp': Pf

Interacting

E [o]= H p(r)p(r [G(r,r)—1]drdr"

H, Hy+AU, Hy+U,

1
g(r.r')=[9,(r,r)dA| Langreth-Perdew 1977
0

In practice, Ex is obtained as the difference: E,.[p] = |EXC [ o] +T[,o]'—TR [ o]

Exchange: no A-average Taken from “exact” QMC calculations



DENSITY FUNCTIONAL THEORY (DFT):
EXCHANGE-CORRELATION HOLE

Coupling constant averaged pair correlation function:

Oxc (r,r) =gy (r,r')+gc(r,r')

Exchange-correlation hole: E..[o] =1ﬂ p() Py (. 1) drdr’
2 |r—r'|

Prc (r,1) = p(r)]gy (r, 1)+ p(r)|@c (r,r) 1]

Sum rules:
Exchange hole contains one missing electron 12

Hartree

Correlation hole integrates to 0 -
Symmetry: 9(r,r’)=g(r,r) ol s
.. HFE "
Normalization & gl
Should cancel self-interaction W
/. Exact
0.2
0




EXCHANGE AND CORRELATION IN DFT:
THE LOCAL DENSITY APPROXIMATION (LDA)

The inhomogeneous electron gas is considered as locally

homogeneous:
i E,c[p)= [ p(1) 2 [p)(r)

r,r
42001 [ 220 e

XC energy density of the HEG 0

G ) = TS r - r|p(r»{"(( ))}

LDA XC hole centred at r, interacts with the electron also at r.
The exact XC hole is centred at r’

This 1s partially compensated by multiplying the pair correlation
function with the density ratio p(r)/p(x’)



EXCHANGE AND CORRELATION IN DFT:
THE LOCAL DENSITY APPROXIMATION (LDA)

Location of the XC hole (Jones and Gunnarsson, 1982)
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L -013
10 [ S N ¥
//”’ \\\
//
- 1 ' 1 1 1
-0.3 -0.2 (r-r')/a, 0.0 0.1
T T T T /L_\ T T -’ln T
-‘{—80.13 Rn:‘°(r,R) 0,06 - // N RN (r,R) _
L] \ .
B \\ o = 0,63 1
0,04 - \
\
- ~ \\ o
0'02 <F)Exocl B
fehy N
R’w % .
1 1 SNol e —




LDA-LSDA: TRENDS AND LIMITATIONS

o Favors more homogeneous electron densities

o Overbinds molecules and solids (Hartree-Fock underbinds)

o Geometries, bond lengths and angles, vibrational frequencies

reproduced within 2-3%

o Dielectric constants overestimated by about 10%
o Bond lengths too short for weakly bound systems (H-bonds, VDW)

o Correct chemical trends, e.g. ionization energies

Atoms (core electrons) poorly described (HF 1s much better)

o XC potential decays exponentially into vacuum regions. It should

O O O O O

decay as —e?/r. Hence, it is poor for dissociation and ionization
Poor for metallic surfaces and physisorption

Very poor for negatively charged ions (self-interaction error)
Poor for weakly bound systems: H-bonds (Vp), VDW (non-local)
Band gap in semiconductors too small (~40%)

Poor for strong on-site correlations (d and f systems, oxides, UO,)




BEYOND THE LDA

Inhomogeneities in the density

Self-interaction cancellation

Non-locality in exchange and correlation

Strong local correlations

Gradient expansions

Weighted density approximation

Exact exchange in DFT (OEP local vs HF non-local)
DFT-HF hybrids

Self-interaction correction

Van der Waals and RPA functionals

LSDA+U

Multi-reference Kohn-Sham

GW approximation (Many-body)



GRADIENT EXPANSIONS:
GENERALIZED GRADIENT APPROXIMATION

Eyxc expanded in gradients of the density

Ecaalr] = [ p(1) [0, S1(r) Fyc Lo, &, s)(r)dr

where ( 1s the spin polarization
s=|Vp |/2kpp 1s the density gradient

And Fy 1s the enhancement factor

First-order term is fine, but higher-order terms diverge. Only by
some re-summation to oo-order the expansion converges.

GGA: Fy. is designed to fulfil a number of exactly known
properties, e.g. Perdew-Burke-Ernzerhof (PBE)

Exchange: uniform scaling, LSDA limit, spin-scaling
relationship, LSDA linear response, Lieb-Oxford bound

Correlation: second-order expansion, hole sum rule, vanishes
for rapidly varying densities, cancels singularity at high densities
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PROPERTIES OF THE GGA

Improves atomization and surface energies

Favors density inhomogeneities

Increases lattice parameters of metals

Favors non-spherical distortions

Improves bond lengths

Improves energies and geometries of H-bonded systems

There 1s error cancellation between X and C at short range

XC potential still decays exponentially into vacuum regions
Some improvement in band gaps in semiconductors

What was correct in LDA is worsened in GGA

Still incorrect dissociation limit. Fractionally charged fragments
Inter-configurational errors in I, and E,

Error cancellation between X and C is not complete at long-range.
X hole 1s more long-ranged than XC hole




HYBRID FUNCTIONALS

Combine GGA local exchange with Hartree-Fock non-local
exchange:

Evern o] = ESGA[IO] +(l1-a) E;IF o]+ EcC:;GA[p]

Parameter o fitted to experimental data for molecules (~0.75), or
determined from known properties.

PBEO, BSLYP, HSE06

Properties:

Quite accurate in many respects, e.g. energies and geometries
Improve on the self-interaction error, but not fully SI-free
Improve on band gaps

Improve on electron affinities

Better quality than MP2

Fitted hybrids unsatisfactory from the theoretical point of view



SELF-INTERACTION CORRECTION (SIC)

Self-interaction can be removed at the level of classical

electrostatics: 1 _U p(r)p(r') drdr
H — 1
2% |r—r|

Perdew-Zunger 1982 1 0. (N p. (r')
Mauri, Sprik, Suraud Esc =By ZH r—r| drdr

rl
VN =V (1)~ | % dr
—r
Potential is state-dependent. Hence it is not an eigenvalue
problem anymore, but a system of coupled PDEs

Orthogonality of SIC orbitals not guaranteed, but it can be
imposed (Suraud)

Similar to HF, but the Slater determinant of SIC orbitals is
not invariant against orbital transformations

The result depends on the choice of orbitals (localization)



VAN DER WAALS FUNCTIONALS

Van der Waals (dispersion) interactions: are a dynamical
non-local correlation effect

Dipole-induced dipole interaction due to quantum density
fluctuations in spatially separated fragments

p1(r.t) p,(r,t)
Functional (Dion et al 2004):

Apy(t) < > E4(t).Ap,(t)

Eow = || OB, )p(r)drdr'| 4= vDw kernel fully non-local.
Depends on p(r) and p(r’)

Expensive double integral

Efficient implementations (Roman-Perez and Soler 2009)
Good approximations based on dynamical response theory
Beyond VDW: Random Phase Approximation (Furche)



LSDA+U

Strong onsite Coulomb correlations are ot captured by LDA/GGA

These are important for localized (d and f) electronic bands, where
many electrons share the same spatial region: self-interaction
problem

Semi-empirical solution: separate occupied and empty state by an
additional energy U as in Hubbard’s model:

E sonu= Elspnu —%U N(N -1) +%U Z f;f;| fi=orbital occupations

i ]

This induces a splitting in the KS eigenvalues:

o = aELSDA+U _ giLSDA +U(%— fj giocc — giLSDA —uU/?

i
of. g_empty _ giLSDA +U/?2




SUMMARY OF DFT APPROXIMATIONS
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