

Time-evolving TD-DFT for timedependent electronic problems

Emilio Artacho

Nanogune, Ikerbasque & DIPC, San Sebastian, Spain Cavendish Laboratory, University of Cambridge

Miguel Pruneda CIN2 - CSIC, Barcelona

Collaborators

Donostia International Physics Centre Daniel Sanchez-Portal (implementation) Andres Arnau Inaki Juaristi Pedro Echenique & Discussions with Txema Pitarke

& Thanks to Peter Bauer (Linz, Austria)

Ahsan Zeb U Cambridge

Adiabatic decoupling

Quantum mechanics Many electron problem: Density Functional Theory $\begin{array}{l} \displaystyle \frac{m_n}{m_e} >> 1 \\ \displaystyle m_e \end{array}$ $\Rightarrow \displaystyle \text{Nuclei are much} \\ \displaystyle \text{slower than electrons} \end{array}$

F = m a, evolution in (discretised) time: Molecular dynamics

Energy transferred: Measured by stopping power

v (atomic units)

100 keV Recoiling Th nucleus: v = 0.1 a.u.

Electronic versus nuclear stopping

Nuclear stopping dominates at low velocities

Clearly non-adiabatic systems

We cannot use the Born-Oppenheimer decoupling

Need to solve the coupled system of electrons and nuclei

Schroedinger equation for both

Dynamical problem (projectile moving) => TD-Schroedinger

Classical nuclei?

(see discussion of Ehrenfest approximation in Matthew Foulkes's talk)

TD-Schroedinger for electrons only

Time dependent DFT

Usual (stationary) DFT:

 $H\Psi(\{\vec{r}_i\}) = E\Psi(\{\vec{r}_i\}) \quad \rightarrow \quad h^{KS}\psi_n^{KS}(\vec{r}) = \varepsilon_n^{KS}\psi_n^{KS}(\vec{r})$

Time-dependent DFT:

$$H\Psi(\{\vec{r}_i\},t) = i\frac{\partial}{\partial t}\Psi(\{\vec{r}_i\},t) \quad \Rightarrow \quad h^{KS}\psi_n^{KS}(\vec{r},t) = i\frac{\partial}{\partial t}\psi_n^{KS}(\vec{r},t)$$

Neither forces on atoms (no MD), nor moving basis

Hohenberg - Kohn

$$\Psi(\{\vec{r}_i\}) \rightarrow \rho(\vec{r})$$
For our many-electron problem $\hat{H} = T + V_{ee} + \sum_{i=1}^{N} V_{ext}(\vec{r}_i)$
1. $E[\rho(\vec{r})] = \int d^3 \vec{r} V_{ext}(\vec{r}) \rho(\vec{r}) + F[\rho(\vec{r})] \geq E_{GS}$

(depends on nuclear positions)

(universal functional)

2. $E[\rho_{GS}(\vec{r})] = E_{GS}$

Through 1-1 mapping V_{ext} (r) and n(r) Functional unknown!

$$\begin{aligned} & Runge - Gross \\ & \Psi(\{\vec{r}_i\}, t) \rightarrow \rho(\vec{r}, t) \end{aligned}$$

$$For our many-electron problem \quad \hat{H} = T + V_{ee} + \sum_{i=1}^{N} V_{ext}(\vec{r}_i, t)$$

$$V_{ext}(\vec{r}, t) \Leftrightarrow \rho(\vec{r}, t) \quad up \text{ to } c(t)$$

1-1 correspondence => Physical properties are functionals of the density

2.
$$A\left[\Psi\left(\left\{\vec{r}_{i},t\right\}\right)\right] = \int_{t_{0}}^{t_{1}} dt \langle \Psi(t) | i \frac{\partial}{\partial t} - \hat{H}(t) | \Psi(t) \rangle$$

Variational principle of the action instead of E

- Stationary point (not minimum)
- Initial value problem: $\Psi(t=0)$ defines

Kohn - Sham

Independent particles in an effective potential

They rewrote the functional as: $E[\rho] = T_0[\rho] + \int d^3 \vec{r} \rho(\vec{r}) [V_{ext}(\vec{r}) + \frac{1}{2} \Phi(\vec{r})] + E_{xc}[\rho]$ Kinetic energy for system Hartree potential with no e-e interactions The rest: exchange Equivalent to independent correlation particles under the potential $V(\vec{r}) = V_{ext}(\vec{r}) + \Phi(\vec{r}) + \frac{\delta E_{xc}[\rho]}{\delta o(\vec{r})}$

Runge - Gross

Independent particles in an effective potential

$$V_{xc} \equiv \frac{\delta E_{xc}[\rho]}{\delta \rho(\vec{r})} \implies V_{xc} \equiv \frac{\delta A_{xc}[\rho]}{\delta \rho(\vec{r})}$$

Where A_{xc} is obtained by subtracting the action of known bits (Hartree, Kinetic, etc) from the exact A

$$V_{eff}\left[\vec{r},t,\rho(\vec{r}',t')\right] = V_{ext}(\vec{r},t) + \Phi_{Hartree}(\vec{r},t) + \frac{\delta A_{xc}[\rho(\vec{r}',t')]}{\delta\rho(\vec{r}',t')}$$

for $\vec{r}' \in \mathbb{R}^3$; $t' \le t$

Just follow the t-dep of independent particles under V_{eff}

Approximations

Local Density Approximation (LDA)

 $V_{xc}[\rho] \approx V_{xc}(\rho(\vec{r}))$ (function parameterised for the homogeneous electron liquid as obtained from QMC)

Adiabatic Local Density Approximation (ALDA) As above, plus t-dep is local in t No history dependence

Same for Generalised Gradient Approximation (GGA) $V_{xc}[\rho] \approx V_{xc}(\rho(\vec{r}), \nabla \rho(\vec{r}))$

(new terms parameterised for heterogeneous electron systems (atoms) as obtained from QC)

Although TD-DFT was proposed in t-domain, most use is in frequency domain: DFT for excitations

We describe t-dependent processes in t-TD-DFT

As implemented by A Tsolakidis, D Sanchez-Portal and R M Martin, PRB 2002

The SIESTA method

Linear-scaling DFT based on NAOs (Numerical Atomic Orbitals)

P. Ordejon, E. Artacho & J. M. Soler , Phys. Rev. B 53, R10441 (1996)

- Born-Oppenheimer (relaxations, mol. dynamics)
 DFT (LDA, GGA)
 Pseudopotentials (norm conserving, factorised)
 Numerical atomic orbitals as basis (finite range)
- •Numerical evaluation of matrix elements (3D grid)

Implemented in the SIESTA program

J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon & D. Sanchez-Portal, *J. Phys.: Condens. Matter* **14**, 2745 (2002)

Performance of pseudopotentials in high-energy collisions In terms of the screening function

JM Pruneda & EA, PRB 2004

Real time evolution of the density

 ∂t

$$\psi_i(r,t) = \sum_{\mu} c_i^{\mu}(t) \phi_{\mu}(r)$$

$$\rho(r,t) = \sum_{\mu,\nu} \rho_{\mu\nu}(t) \phi_{\mu}(r) \phi_{\nu}(r)$$

• Evolution of the TD-KS equations:

$$i\frac{\partial\psi}{\partial t} = H\psi$$

$$c(t_{n+1}) = \frac{1 - iS^{-1}H(t_n)\frac{\Delta t}{2}}{1 + iS^{-1}H(t_n)\frac{\Delta t}{2}}c(t_n)$$

$$i\frac{\partial c}{\partial t} = S^{-1}Hc$$
Create Niebelson

Crank-Nicholson

Our approach

- Supercell of insulator's bulk
- Periodic boundary conditions
- Density functional theory
- Add external charge (potential)

 Move it and follow electron wave-functions with Time-Dependent DFT

Energy as a function of distance: LiF

Quite stationary! Short transient, no obvious oscillation

Energy vs t

Implies that we take

$$\langle \Psi(t) | \hat{H}(t) | \Psi(t) \rangle = E [\rho(\vec{r}, t')]_{t' \le t} \approx E_{KS}^{ALDA}(t)$$

Goes to the right adiabatic limit, BUT As far as I know, only justified a posteriori

Summary

- Need to go beyond adiabatic
- Starting with the electrons: A projectile as external potential gives a time-dependent Hamiltonian => TD-Schroedinger eq.
- Basics of TD-DFT
- Using time-evolving TD-DFT for stopping power of ions in matter
- Coupling to classical nuclei: see tomorrow's lecture by Matthew Foulkes
- We will see this applied to varied materials tomorrow

Stopping power of projectiles shooting through matter Predicting the rate of electron heating in radiation damage events

Emilio Artacho

Nanogune, Ikerbasque & DIPC, San Sebastian, Spain Cavendish Laboratory, University of Cambridge

Miguel Pruneda CIN2 - CSIC, Barcelona

Collaborators

Donostia International Physics Centre Daniel Sanchez-Portal (implementation) Andres Arnau Inaki Juaristi Pedro Echenique & Discussions with Txema Pitarke & Thanks to Peter Bauer (Linz, Austria) & Nuclear waste project at Cambridge

Jorge Kohanoff (Belfast)

Ahsan Zeb U Cambridge

What to do with nuclear waste

*The*Guardian UK news

Shoot it at the sun. Send it to Earth's core. What to do with nuclear waste?

Government advisers consider 14 ways of getting rid of the troublesome legacy

Paul Brown, environment correspondent Wednesday April 14, 2004 <u>The Guardian</u>

Now: BNFL (UK) vitrifies it into Borosilicate glass (~20%)

Durability ~100 years

10ky – 1My needed!

What to do with nuclear waste

Immobilisation by dilution in ceramics

SYNthetic ROCks with appropriate "minerals" to host high level nuclear waste

Research in durability: resistance to radiation damage

Zircons have contained uranium for billions of years

Zircon: model study: old natural samples

Swelling in zircons

Crystalline swelling: lattice parameters vs dose

Total: ~20% Crystalline: ~5% anisotropic

Intrinsic point defects and crystalline swelling in ZrSiO4

- Radiation cascades & defect accumulation
- Anisotropic swelling: ~1.5% in ab-plane
 ~2% in c-axis

 $\sim 10^{21}$ defects/cm³

Si 0.2% swelling!!

Experiments on live samples of Pu containing zircon (ZrSiO₄): NMR

I Farnan et al, Nature 2007

Experiments on irradiated samples of pyrochlores

GR Lumpkin et al, JPCM 2004

Large scale MD simulations based on empirical force fields Rutile TiO2

Kostya Trachenko

Martin Dove

Large scale MD simulations based on empirical force fields

Quartz SiO2

Quartz GeO2

Large scale MD simulations based on empirical force fields

Corundum Al2O3

Large scale MD simulations based on empirical force fields

MgO

Electrons heat up: effect on the material? Effect on the simulations?

The ion moving in the solid transmits energy to electrons. How much? How? Where? What consequences does it have?

Materials soften if electronic subsystem substantially excited

Coupled electron-nuclei dynamics

FIRST: How much energy goes to electrons?

Not trivial either for exp or for th

Coupled dynamics of both electrons & nuclei

(realistic simulation demands ~ 2M atoms)

Multiscale: Different (decoupled?) timescales
Results from
this study (electronic excitation)
electron-phonon coupling +
heat conductivities for the electron and phonon subsystems

⇒Continuum description of excess energy

$$\Delta E_{el} (\mathbf{r}, t)$$

First: how much energy is it pumped to the electrons per unit time

Electronic versus nuclear stopping

Electronic stopping power

v (atomic units)

Scale: few eV/Ang at v = 1 a.u.

But what about insulators?

Protons and antiprotons into LiF thin films

"Antiproton Stopping at Low Energies: Confirmation of Velocity-Proportional Stopping Power" SP Møller *et al.* PRL **88**, 193201 (2002) & PRL **93**, 042512 (2004)

Perfectly linear, no difference

Protons into LiF thin films again

Scale: v = 0.1 a.u. => Stopping ~ 1 eV/Ang

Threshold

Protons into LiF thin films again

S. Markin et al, PRL 103, 113201 (2009)

Scale: v = 0.1 a.u. => Stopping ~ 1 eV/Ang

Threshold

Threshold: what to expect?

TD Pertub. Th. (weak projectile potential) e-h excitations such that

 $\Delta \varepsilon / \Delta k = v$

Strict threshold: $1/2 (m_e + m_h) v_c^2 = E_{gap}$ $V(q = \Delta k)$

Flat-band limit: Simple model

Gaussian perturbation scaling as V_0

E Artacho, JPCM 2007

Realistic simulations: TD-DFT

- Supercell of insulator's bulk
- Periodic boundary conditions
- Density functional theory
- Add external charge (potential)

• Move it and follow electron wave-functions with Time-Dependent DFT

The SIESTA method

Linear-scaling DFT based on NAOs (Numerical Atomic Orbitals)

P. Ordejon, E. Artacho & J. M. Soler , Phys. Rev. B 53, R10441 (1996)

- Born-Oppenheimer (relaxations, mol. dynamics)
 DFT (LDA, GGA)
 Pseudopotentials (norm conserving, factorised)
 Numerical atomic orbitals as basis (finite range)
- •Numerical evaluation of matrix elements (3D grid)

Implemented in the SIESTA program

J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon & D. Sanchez-Portal, *J. Phys.: Condens. Matter* **14**, 2745 (2002)

Energy as a function of distance: LiF

Quite stationary! Short transient, no obvious oscillation

Rate of energy transfer: electronic stopping power

Rate of energy transfer: electronic stopping power

Protons and antiprotons through LiF

Threshold ~ 0.2 *a.u.* (exp ~ 0.1)

Ratio $SP_p/SP_a \sim 2.4$ (exp ~ 2.1)

Absolute value: improve basis; sp basis along trajectory (for p)

Rate of energy transfer: electronic stopping power

But: Th is channelling, exp is average

Evolution of the charge on nearby Li atoms

Position of projectile along trajectory (x=0 closest to nearest Li)

Screening of charge enhanced at finite v Extremely short-ranged mechanism! Why?

Locality in the electronic stopping power

Protons in LiF

Compare bulk with small cluster Li₆F⁵⁺

What about metals beyond jellium? Noble and transition metals 16 Au r_s= 1.49 14 r_s= 1.49 12 (10⁻¹⁵ eVcm²) 10 , kink 3.01 ω 3.01 He: ABS H: ABS 2 He: S.N. Markin, PhD H: S.N. Markin et al. PRB (2008) 0 0.0 0.1 0.2 0.3 0.4 0.5 0.6

Electron heating by H and He projectiles in bulk Au

v (a.u.)

S. N. Markin, D. Primetzhofer, M. Spitz, and P. Bauer, PRB 2009

Summary

- Using TD-DFT for obtaining the energy transfer from moving ions to electrons in insulators.
- New approach, lots of approximations, but complementary to previous studies
- Offers new kinds of information
- Need to couple with ion motion

Important:

Recoiling Th-ion velocity: around threshold! Stopping + Rad Dam + CEID

Funding

British Nuclear Fuels Ltd

NATURAL ENVIRONMENT RESEARCH COUNCIL

Miller Institute for Basic Research in Science University of California, Berkeley