

Summer School on Climate Impacts Modelling for Developing Countries: Water, Agriculture and Health

(5 September 2011)

Session II: Weather data input for impact modelling

Comparison of high-resolution satellite-based precipitation products over Africa

Vera Thiemig Land Management and Natural Hazards Unit Institute for Environment and Sustainability

Comparison of high resolution satellite-based precipitation products over Africa

Precipitation = key steering factor of many socio-economic activities

- rainfed agriculture \rightarrow nourishment
- floods \rightarrow drowning
- droughts \rightarrow starvation

Aim decrease socio-economic and human losses (facilitate planning of prevention, protection and mitigation measures)

- **Approach** development / use of impact models, e.g.
 - · agricultural models
 - · flood or drought forecast models

Dilemma model performance relies on accuracy of precipitation information

Summary

Discussion

Recommendation

Which precipitation data should we use to feed our models?

Outline

Introduction

importance & truth objectives

• Objectives

Data

• SRFE

measurements

Target area

Methods

- rainfall characteristics
- analysis:
- point-to-pixel
- average-point-topixel
- large scale

Results

error statistic

- quantile distributionmonthly evaluation
- event-based
- evaluation
- spatial distribution

Comparison of high resolution satellite-based precipitation products over Africa

Precipitation information

traditionally rain gauge observations

- Introduction
- importance & truth
- objectives

Data

- SRFE
- measurements

Target area

Methods

- rainfall characteristics
- analysis:
- point-to-pixel
- average-point-topixel
- large scale

Results

- error statistic
- quantile distribution
- monthly evaluation
- event-based evaluation
- spatial distribution

Summary

Recommendation

Discussion

- © long historical records
- 😊 easy format
- insufficient network density
- 😕 point data
- 8 missing values
- e questionable reliability of records
- 8 delay in reporting time
- 8 limited accessibility of available data

Many disadvantages! Is there an alternative?

recently

satellite-based rainfall estimates (SRFE)

Looks more promising. But how reliable are they?

Comparison of high resolution satellite-based precipitation products over Africa

This presentation should give ...

- Outline
- Introduction
- importance & truth objectives
- Data
- SRFE
- measurements

Target area

- Methods
- rainfall characteristics
- analysis:
- point-to-pixel
- average-point-topixel
- large scale
- Results
- error statistic
- quantile distributionmonthly evaluation
- event-based evaluation
- spatial distribution

Summary

Discussion

Recommendation

1) an overview about available high resolution SRFE products

- 2) an indication about which product is the closest to ground observations
 - a) for certain areas (geographical location, climatologic conditions, topographic realities)
 - b) on a pan-African scale

For whom is this PPP of interest?

- 1) People that need to select a precipitation data set for their application and don't know the strength and weaknesses of the individual SRFE products
- 2) People that use one of these SRFE products and would like to know more about them

Comparison of high resolution satellite-based precipitation products over Africa

Which satellite-based rainfall estimates (SRFE) should be validated?

Outline

Introduction

- importance & truth
- objectives

Data • SRFE

• measurements

Target area

Methods

- rainfall
 characteristics
- analysis:
- point-to-pixel
- average-point-topixel
- large scale

Results

- error statistic
- quantile distribution monthly evaluation
- event-based
- evaluationspatial distribution
- spatial distribution

Summary

Recommendation

- provided timely
- high temporal (≤ daily) and spatial (≤ 0.25°) resolution
- free of charge
- easily accessibility
- consistent (not many missing values)

Product	Provider	Spatial coverage	Temporal coverage	Spatial resolution	Temporal resolution	
CMORPH	NOAA-CPC	60°N-S, globally	since 06.12.2002	0.25°	3 h	
ERA-interim	ECMWF	global	1989 - 2009	~ 79 km	6 h	
GPROF v6	NASA	globally	Since 01.01.1998	0.25°	24 h	
GSMaP-MVK	JAXA/EORC	60°N-S, globally	2003 - 2008	0.1°	1 h	
PERSIANN	University of Arizona	60°N-S, globally	Since 01.03.2000	0.25°	6 h	
PERSIANN- CCS	University of Arizona	50°N-S, globally	Since 01.03.2000	0.04°	0.5 h	
RFE 2.0	NOAA-CPC	40°N-S, 20° W - 55°E	Since 01.01.2001	0.1°	24 h	
TRMM 3B42 v6	NASA	50°N-S, globally	Since 01.01.1998	0.25°	3 h	

93 national stations (GTS stations excluded)

Comparison of high resolution satellite-based precipitation products over Africa

Ground truth data

•

.

Outline

Introduction

- importance & truth
- objectives

Data

- SRFE
- measurements

Target area

Methods

- rainfall
 characteristics
- analysis:
- point-to-pixel
- average-point-topixel
- large scale

Results

- error statistic
- quantile distribution
- monthly evaluation
 event-based
- evaluation
- spatial distribution

Summary

Recommendation

Discussion

CRU TS 3.1

- interpolated monthly observations
- grid data (0.5°)

rain gauge observations

data from 2000 - 2005

daily records

- released by British Atmospheric Data Centre
- publicly available: <u>http://www.cru.uea.ac.uk</u>

<form>

COMPLETE Home & COMPLETE CALORS TO 2 1 + DRU Data Street H. Davagerer | Dat © 2018 - COMPLETE Hand Science for Spatial Information (COMPLETE)

Limitations:

· accessibility of data

Comparison of high resolution satellite-based precipitation products over Africa

Over which areas should we validate?

Focus:

- river-basin scale
- different climatologic regimes
- Different topographic realities

Zambezi

· amount, quality and distribution of available data

- tropical wet and dry
- one rain season
- 1200 mm/a (northern part)
- 38 stations

Volta

- mostly: tropical wet and dry
- one rain season (inland), two (at coastal zone)
- 300 (north), 1200 mm/a (south)
- 29 stations

Juba-Shabelle

- mostly: semi-arid to arid
- two rain seasons
- 500 mm/a
- 12 stations

Baro-Akobo

- highland climate
- one rain season
- 1800 mm/a
- 13 stations

Outline

Introduction

• importance & truth

objectives

Data

SRFE

measurements

Target area

Methods

- rainfall characteristics
- analysis:
- point-to-pixel
- average-point-topixel
- large scale

Results

- error statistic
- quantile distributionmonthly evaluation
- event-based
- evaluation
- spatial distribution

Summary

Recommendation

Comparison of high resolution satellite-based precipitation products over Africa

What characteristics do we want to validate?

Outline

Comparison of high resolution satellite-based precipitation products over Africa

With a point-to-pixel analysis?

 If possible then not. Both have a different spatial representation, which would be derogatory to the skill of the satellite products

Solution: average-points-to-pixel analysis

 If 5 or more stations are within a 2.5 x 2.5° cell, then the error of this average observation is negligible (less then 10 %) in comparison to the bias of the SRFE

general ability

distributio

quantity

timing

general abili

general ability

seasonalit

event based

error statistic: RMSE, PBIAS, NSeff,

detailed analysis of the 10 highes observed rainfall events

onthly average

mber of rainv

Solution: large-scale analysis with CRU

Outline

Introduction

importance & truth

objectives

Data • SRFE

• measurements

Target area

Methods

- rainfall characteristics
- · analysis:
- point-to-pixel
- average-point-topixel
- large scale

Results

- error statistic
- quantile distribution
- monthly evaluation
- event-based evaluation
- spatial distribution

Summary

Discussion

Recommendation

Comparison of high resolution satellite-based precipitation products over Africa

Error statistic

- first impression:
- for Zambezi and Volta RFE 2.0 and TRMM 3B42 are the best
- for JS and BA CMORPH is the best
- rainfall characteristics

measurements

Target area

analysis:

Methods

Outline

Introduction

importance & truth

objectives

Data

SRFE

- point-to-pixel
- average-point-topixel
- large scale

Results

- error statistic
- quantile distribution
- monthly evaluation
- event-based evaluation
- spatial distribution

Summary

Recommendation

Discussion

2nd best score

			Zambezi					Volta					Juba- Shabelle		Baro- Akobo	
			Z-1	Z-3	Z-4	Z-5	Z-7	V-1	V-2	V-3	V-4	V-6	JS-1	JS-3	ВА- 1	ВА- 2
		ERA-interim	2.8	3.0	2.2	2.5	2.2	2.2	1.8	2.8	3.4	4.1	1.2	20.1	4.3	4.5
		GPROF	4.3	4.0	3.5	3.9	3.1	3.8	3.4	5.6	5.5	5.4	0.9	31.8	4.4	4.2
		TRMM 3B42	24	28	20	21	18	21	23	29	32	34	0.8	21.3	27	31
	1AE	PERSIANN	4 1	37	3.0	35	2.9	39	38	4.5	48	54	0.9	24.8	36	36
nd	2	RFE 2.0	2.3	2.5	1.9	2.0	1.6	1.5	1.8	2.3	2.4	2.9	0.8	23.0	2.8	3.1
-		<u>GSMaP</u> - MKV	4.1	4.0	3.3	3.8	2.8	4.7	4.8	5.9	6.6	6.0	1.0	42.2	4.8	5.1
		CMORPH	3.2	3.2	2.3	3.1	2.3	2.7	3.2	3.9	4.1	4.6	0.7	19.5	2.5	3.4
		ERA-interim	5.3	6.8	4.8	5.6	4.4	4.9	4.2	5.0	6.8	6.6	3.0	4.5	7.4	6.9
		GPROF	8.9	8.9	8.1	8.9	7.4	10.6	10.4	13.2	12.9	11.9	3.4	5.6	7.4	7.1
	ш	TRMM 3B42	5.0	6.6	4.5	5.5	4.3	5.1	5.3	6.0	6.8	6.8	3.1	4.6	4.8	5.3
	SMS	PERSIANN	7.6	7.8	6.6	7.7	6.5	8.6	8.3	8.9	9.4	9.6	3.1	5.0	5.9	6.0
	UZ.	RFE 2.0	4.7	6.3	4.3	51	3.7	3.8	4.1	4.7	5.2	5.8	3.0	4.8	4.8	5.5
		GSMaP- MKV	9.8	9.7	8.7	10.3	8.3	14.4	18.3	17.2	17.6	15.6	4.9	6.5	10.4	10,5
		CMORPH	6.1	7.1	4.9	6.6	5.1	6.0	7.4	8.2	8.1	8.5	2.6	4.4	4.5	5.5
		ERA-interim	31	-13	1	14	24	-33	-31	-6	-18	36	38	63	40	60
		GPROF	60	7	31	53	44	23	47	82	49	46	-52	-2	-8	-6
	S	3B42	-2	-15	2	-15	0	4	24	4	-4	4	-33	-19	-34	-23
	B/	PERSIANN	83	15	39	68	51	82	114	69	52	68	-45	-20	-30	-33
	ш	RFE 2.0	6	-17	-1		7	-1	17	-7	-12	-4	-25	-24	-34	-23
		MKV	25	-4	-13	11	20	41	78	80	36	26	-14	-66	-5	6
		CMORPH	71	20	33	56	56	49	86	85	48	59	-26	-23	6	20
		ERA-interim	0.1	0.27	0.36	0.26	0.25	0.14	0.15	0.17	0.08	-0.03	0.04	0.02	-0.49	-0.73
		GPROF	-1.57	-0.27	-0.85	-0.87	-1.14	-2.9	-4.27	-4.78	-2.31	-2.39	-0.17	-0.55	-0.52	-0.81
	Ű	3B42	0.19	0.31	0.43	0.29	0.29	0.09	-0.36	-0.19	0.1	-0.11	0	-0.04	0.37	0.01
	- N N N	PERSIANN	-0.94	-0.02	-0.25	-0.41	-0.76	-1.54	-2.34	-1.56	-0.72	-1.16	0.03	-0.18	0.04	-0.26
		RFE 2.0	0.3	0.39	0.5	0.4	0.46	0.52	0.18	0.27	0.49	0.24	-0.24	-0.2	0.33	-0.02
		MKV	-2.01	-0.53	-0.91	-1.12	-1.72	-5.23	-13.3	-9.34	-4.41	-4.4	-2.04	-0.87	-1.81	-2.47
		CMORPH	-0.15	0.17	0.39	0.12	-0.03	-0.08	-1.33	-1.33	-0.15	-0.6	0.13	0.14	0.47	0.05

Comparison of high resolution satellite-based precipitation products over Africa

Quantile distribution

Outline

Introduction

- importance & truth
- objectives

Data

- SRFE
- measurements

Target area

Methods

- rainfall characteristics
- analysis:
- point-to-pixel
- average-point-topixel
 large scale

Results

- error statistic
- quantile distribution
- monthly evaluation
 event-based
- evaluation
- spatial distribution

Summary

Recommendation

- (1) a good agreement of the amount of low precipitation (< 15 mm) values
- (2) increased amount of high precipitation values for GPROF and GSMaP-MVK
- (3) increased amount of lower small precipitation values while shifting towards underestimation of observed precipitation for high values for ERA-interim

Comparison of high resolution satellite-based precipitation products over Africa

monthly box-plots

8

₿

B

8

₿

₿

Ħ

R

8

Volta

Zambezi

monthly precipitation [mm]

Outline

Introduction

- importance & truth
- objectives
- Data
- SRFE
- measurements

Target area

Methods

- rainfall characteristics
- · analysis:
- point-to-pixel
- average-point-topixel
- large scale

Results

- error statistic
- quantile distribution
- event-based
- evaluation
- spatial distribution

Summary

Recommendation

-	observed
	ERA-interim
	GPROF
	TRMM 3B42
	PERSIANN
	RFE 2.0
	GSMaP-MVK
	CMORRU

- large spread between the quartiles \rightarrow high monthly variability
- median low \rightarrow most month hold low precipitation
- positive skewness for CMORPH, PERSIANN and GPROF
- median confirms increase of precipitation from north to south
- TRMM 3B42 and PFE capture the spread well
- Juba-Shabelle negligible differences between the SRFE
 - narrow spread reflect arid conditions
 - SRFE have skill in reproducing precipitation for this area on a monthly scale
- Baro-Akobo · large
 - large difference between north and south
 product wise CMORPH access to be most ac
 - product-wise CMORPH seems to be most accurate

Comparison of high resolution satellite-based precipitation products over Africa

Average inter-annual variation

Outline

Introduction

- importance & truth
- objectives
- Data
- SRFE
- measurements

Target area

Methods

- rainfall characteristics
- · analysis:
- point-to-pixel
- average-point-topixel
- large scale

Results

- error statistic
- quantile distribution
- monthly evaluation
 event-based

evaluationspatial distribution

Summary

Recommendation

- better accuracy during the relative dry periods, large deviations during the wet months
 PERSIANN_CMORPH_GSMaP-MVK and GPROE stick out with large mostly positive
- (2) PERSIANN, CMORPH, GSMaP-MVK and GPROF stick out with large, mostly positive, deviations
- (3) TRMM 3B42 and RFE 2.0 show the highest accuracy

Comparison of high resolution satellite-based precipitation products over Africa

highest annual rainfall events

Data

- SRFE
- measurements

Target area

Methods

- rainfall characteristics
- · analysis:
- point-to-pixel
- average-point-topixel
- large scale

Results

- · error statistic
- quantile distribution
- monthly evaluation
- event-based evaluation
- spatial distribution

Recommendation

Comparison of high resolution satellite-based precipitation products over Africa

Spatial distribution

Outline

Introduction

- importance & truth
- objectives

Data

- SRFE
- measurements

Target area

Methods

- rainfall characteristics
- · analysis:
- point-to-pixel
- average-point-to-pixel - large scale

- Results error statistic
- quantile distribution
- monthly evaluation
- event-based evaluation
- spatial distribution

Recommendation

≥1100

- CRU data serves as reference (gridded observation)
- significant overestimation over the tropics (PERSIANN(-CCS), CMORPH, ERAinterim)
- RFE 2.0 and TRMM 3B42 are very close to the observation
- · same tendencies for maximum monthly values

Discussion

Summary

Outline

Introduction

- importance & truth
- objectives
- Data
- SRFE
- measurements

Target area

Methods

- rainfall characteristics
- analysis:
- point-to-pixel
- average-point-topixel
 large scale

Results

- error statistic
- quantile distribution
- monthly evaluation
 event-based
- event-based evaluation
- spatial distribution

Summary

Recommendation

Discussion

Session II: Weather data input for impact modelling

Comparison of high resolution satellite-based precipitation products over Africa

All products / in general

- © very good reproduction of dry periods
- © good reproduction of spatial pattern across the continent
- 8 underestimate amount of heavy rainfall events
- 😕 largest deviations within the wet periods

Product-wise

- GPROF & GSMaP-MKV
 - PERSIANN(-CCS)
- ERA-interim
 - CMORPH
 - RFE 2.0 & TRMM 3B42

- KV → daily rainfall variability wrongly reproduced: most days rainfree; low amount of rainy days hold extreme values
 - \rightarrow large overestimations (annual; over the tropical band)
 - → daily rainfall variability too flat (most days are rainy days, but the amount of rainfall is low: around 6-10 mm)
 - → captures rainfall over mountainous areas well; overestimation in low altitudes
 - → closest to observed (inter-annual variability, spatial distribution pattern, timing of heavy rainfall events)

Comparison of high resolution satellite-based precipitation products over Africa

Which data set to chose...

... for certain areas?

- Mountainous regions:
 - CMORPH,
 - GPROF (for monthly applications)
 - Arid to semiarid zone:
 - CMORPH,
 - RFE 2.0
 - Tropical wet and dry:
 - RFE 2.0,
 - TRMM 3B42
 - (Tropical wet:
 - RFE 2.0,
 - TRMM 3B42)

... on a pan-African scale?

• RFE 2.0, TRMM 3B42

Outline

Introduction

- importance & truth
- objectives

Data

- SRFE
- measurements

Target area

Methods

- rainfall characteristics
- analysis:
- point-to-pixel
- average-point-topixel
- large scale

Results

- error statistic
- quantile distribution
- monthly evaluation
- event-based evaluation
- spatial distribution

Summary

Recommendation

Comparison of high resolution satellite-based precipitation products over Africa

Thank you for your attention!

Outline

Introduction

- importance & truth
- objectives

Data

- SRFE
- measurements

Target area

Methods

- rainfall characteristics
- analysis:
- point-to-pixel
- average-point-topixel
- large scale

Results

- error statistic
- quantile distribution
- monthly evaluation
- event-based evaluation
- spatial distribution

Summary

Recommendation

