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Evolution of Hydrologic R-R Models
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Model Calibration




The ldentification Problem

1. Select a model structure (Input-State-Output equations)

2. Estimate values for the parameters

U — Universal Set

B - Basin ‘

M;(0) — Selected
Model Structure
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The Concept of Model Calibration

Measured Measured
Inputs Outputs

B Real World B

MODEL (9) Computed
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Optimization
Procedure

___ 'Calibration: constraining the model to be consistent with observations”
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Calibration components

Objective Function
Search Algorithm

Sensitivity Analysis

Problems with identifiability
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Calibration Criterion

[General Exponential Power Density]
(Posterior Parameter Probability Distribution Function)
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Objective function Parameter Space

0, 0

Parameter Space Objective Function Space
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Parameter Sensitivity

Parmeter Space
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Parameter Sensitivity
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The Ideal case: Convex Optimization
B

Objective Function

Parameter X Created By G-H Park




Difficulties in Global Optimization

Objective Function

T
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Parameter X Created By G-H Park




Parameter Estimation (non-convex, multi-optima)
—

Objective Function

Parameter X Created By G-H Park




Parameter Estimation (non-convex, multi-optima)
—

Global Optiyg

Objective Function

Parameter X Created By G-H Park




Data information content

Cmax

“Bucket Model”
Simple two parameter Model
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Data information content
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Difficulties in Optimization

1.- Regions of More than one main
: nvergence region
Attraction CONVergenceredio

Duan, Gupta, and Sorooshian, 1992, WRR
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Difficulties in Optimization

2.- Local Many sm_aII "pits" in
Optima each region

Duan, Gupta, and Sorooshian, 1992, WRR
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Difficulties in Optimization

3.- Roughness Rough surface with
discontinuous

derivatives

Duan, Gupta, and Sorooshian, 1992, WRR
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Difficulties in Optimization

1.- Regions of More than one main
convergence region

Attraction
2 - Local Many small "pits" in
Optima each region

3.- Roughness Rough surface with
discontinuous

derivatives

4.- Flatness Flat near optimum with
significantly different
parameter sensitivities

Duan, Gupta, and Sorooshian, 1992, WRR
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Difficulties in Optimization

1.- Regions of
Attraction

2.- Local
Optima

3.- Roughness

4.- Flatness

More than one main
convergence region

Many small "pits" in
each region

Rough surface with
discontinuous
derivatives

Flat near optimum with
significantly different
parameter sensitivities

Long and curved
ridges

Duan, Gupta, and Sorooshian, 1992, WRR
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Optimization Strategy — Local Direct Search

Calibration of the Sacramento Model
Downhill Simplex Method, Nelder & Mead, 1965

Parameter Value .
Parameter Value

1500 2000 S00 1500 - 2006}
Function Evaluations _ Function Evaluations
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The SCE-UA Algorithm ...
(1992)

Duan, Gupta, and Sorooshian, 1992. WRR
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The Shuffled Complex Evolution Algorithm

The SCE-UA Algorithm ...

Duan, Sorooshian, and Gupta 1992, WRR
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The Concept Behind SCE Method
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The Concept Behind SCE Method




The Concept Behind SCE Method




The Concept Behind SCE Method




SCE Method — How 1t works ...




Shuffled Complex Evolution (SCE-UA)




Global Optimization — The SCE-UA Algorithm

Duan, Gupta & Sorooshian, 1992, WRR
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SCE-UA only solves for Mode of Distribution

Probability distribution
to be maximized
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Shuffled Complex Evolution Metropolis

Vrugt, Gupta, Bouten & Sorooshian
WRR 2003
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Need estimates of the prediction uncertainty

|
*
Probability distribution p(@ |.)
to be maximized

Uncertainty

associated
/ with parameters

{ | Total Uncertainty

1| Including structural
f errors
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Parameter Uncertainty Methods

(1) First-order approximations near global optimum (Kuczera etal)

Limitations
. Assumes Model is Linear T

o0
oo
:.
. Assumes Posterior Dist. Guassian \.&

D
< 3882

ﬂ

(2) Generalized Likelihood Uncertainty Estimation (GLUE) 0,
method (Beven and co-workers)

(3) Markov Chain Monte Carlo (MCMC) methods
(Vrugt and others)




Flow Ranges instead of point estimates

AR (mim

Streamflow [mafsec]
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Advances In Parameter Estimation
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Land-Surface Model
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Multi-Objective Approaches

Inputs Model Outputs

Radiation ]
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Multi-Criteria Calibration Concept
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Multi-Criteria Calibration Approach

) Gupta, Sorooshian, Yapo, WRR, 1998
4 Center for Hydrometeorology and Remote Sensing, University of California, Irvine




Multi-Objective Optimization Problem

=} Minimize F(0)={ F,(0),..,F,(0)}

wrt 0=Q

Simultaneously finds
several Pareto Solutions
In a Single Optimization

F,(9)

. Center for Hydrometeorology and Remote Sensing, University of California, Irvine



ES
6 hansas

Ok ahsaiea

~r. o
E1l 30

Grid: ~100,000 km?
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& Multi-Flux Calibrations

Obsarved
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AGU Monograph — Now Available

Water Science and Application &

Calibwation of Watershed Models presents

a state-of-the-art analysis of mathematical
methads used in the identification of models
for hydrologic forecasting, design, and water
resources management. From reviewing
advances in calibration methedologies,

to describing autornated and interactive
strategies for parameter estimation, uncertainty
analysis, and probabilistic prediction, this
book addresses five questions essential to
the discipline:

What constitutes best estimates for
watershed madel parameters?

What cormputational procedures ensure
proper model calibration and meaningful
evaluation of performance?

Howw are calibration methods developed
and applied to watershed models?

What calibration data are needed for
reliable parameter values?

How can watershed modelers best
estimate model parameters and assess
related uncertaintiest

Faor scientists, researchers and students of
watershed hydrology, practicing hydrologists,
civil and ervironmertal engineers, and water
rEsOUrcE managers.

Qingyun Duan
Hoshin V. Gupta
Soroosh Sorooshian
Alain N. Roussean
Richard Turcotte
Editors
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End of Lecture I
Thank You For Listening

Rlver NM Photo: J. Sorooshian 2005
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