
Center for Hydrometeorology and Remote Sensing, University of California, Irvine 

  
 Lecture  III 

Calibration and parameter Estimation 
Requirements of Hydrologic Models  

Soroosh Sorooshian  
Center for Hydrometeorology  and Remote Sensing 

University of California Irvine  
 

The Abdus Salam ICTP Summer School on:  
Climate Impact Modeling  for Developing Countries:  
 Water,  Agriculture  & Health  
Trieste, Italy:  Sept. 5th – 16th 2011 



Center for Hydrometeorology and Remote Sensing, University of California, Irvine 

MODEL 

PARAMETER 
ESTIMATION 

DATA 

If the “World” of 
Watershed Hydrology 
Was Perfect! 

Hydrologic Modeling:   3 Elements!   
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Model Calibration  



Center for Hydrometeorology and Remote Sensing, University of California, Irvine 

The Identification Problem 
1. Select a model structure (Input-State-Output equations) 
 

2. Estimate values for the parameters 

U 
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M2(θ) 
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The Concept of Model Calibration 
Measured 
Outputs 

Yt 

t 

Real World  

Measured 
Inputs 

MODEL (θ) Computed 
Outputs 

Prior 
Info θ 

Computed 
Outputs 

+ 
- 

Optimization 
Procedure θ 

“Calibration:  constraining the model to be consistent with observations” 
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The Automatic  
Calibration Approach 
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Calibration components 

Objective Function 

Search Algorithm 

 Sensitivity Analysis 

 

Problems with identifiability 
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 [General Exponential Power Density] 
(Posterior Parameter Probability Distribution Function) 
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Calibration Criterion  
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Objective function Parameter  Space  

θ1  

θ2  

F(θ) 

θ 

Parameter Space Objective Function Space 
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Parameter Sensitivity 

θ1  

θ2  

Parmeter Space 
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Parameter Sensitivity 

θ1  

θ2  

Parameter Space 
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True Parameter Set 

The Ideal case: Convex Optimization 

Created By  G-H Park 
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Difficulties in Global Optimization 

Created By  G-H Park 
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Global Optimum 

Parameter Estimation (non-convex, multi-optima) 

Created By  G-H Park 
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Global Optimum 

Created By  G-H Park 

Parameter Estimation (non-convex, multi-optima) 
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Data information content  

“Bucket Model”  
Simple two parameter Model 
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Data information content  
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More than one main 
convergence region

1.- Regions of
     Attraction

Difficulties in Optimization 

Duan, Gupta, and Sorooshian, 1992, WRR 
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More than one main 
convergence region

1.- Regions of
     Attraction

2.- Local
     Optima

Many small "pits" in 
each region

Difficulties in Optimization 

Duan, Gupta, and Sorooshian, 1992, WRR 
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2.- Local
     Optima

Many small "pits" in 
each region

More than one main 
convergence region

1.- Regions of
     Attraction

3.- Roughness Rough surface with 
discontinuous 
derivatives

Difficulties in Optimization 

Duan, Gupta, and Sorooshian, 1992, WRR 
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3.- Roughness Rough surface with 
discontinuous 
derivatives

2.- Local
     Optima

Many small "pits" in 
each region

More than one main 
convergence region

1.- Regions of
     Attraction

4.- Flatness Flat near optimum with 
significantly different 
parameter sensitivities

Difficulties in Optimization 

Duan, Gupta, and Sorooshian, 1992, WRR 
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4.- Flatness Flat near optimum with 
significantly different 
parameter sensitivities

3.- Roughness Rough surface with 
discontinuous 
derivatives

2.- Local
     Optima

Many small "pits" in 
each region

More than one main 
convergence region

1.- Regions of
     Attraction

Difficulties in Optimization 

5.- Shape Long and curved 
ridges

Duan, Gupta, and Sorooshian, 1992, WRR 
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Optimization Strategy – Local Direct Search 

Calibration of the Sacramento Model 
Downhill Simplex Method, Nelder & Mead, 1965 

Duan, Gupta, and Sorooshian, 1992, WRR 
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The SCE-UA Algorithm … 
(1992) 

Duan, Gupta, and Sorooshian, 1992, WRR 
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The SCE-UA Algorithm … 

Duan, Sorooshian, and Gupta 1992, WRR 

The Shuffled Complex Evolution Algorithm 
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The Concept Behind SCE Method 
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The Concept Behind SCE Method 
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The Concept Behind SCE Method 
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The Concept Behind SCE Method 
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SCE Method – How it works … 
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Shuffled Complex Evolution (SCE-UA) 
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Global Optimization – The SCE-UA Algorithm 

Simplex 
Method 

Shuffled 
Complex 
Evolution 
(SCE-UA) 

Duan, Gupta & Sorooshian, 1992, WRR 
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SCE-UA only solves for Mode of Distribution 

Probability distribution 
to be maximized  

*θ
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 Shuffled Complex Evolution Metropolis 

SCE SCEM Vrugt, Gupta, Bouten & Sorooshian 
WRR 2003 
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 Need estimates of the prediction uncertainty 

*θ
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Uncertainty 
associated 
with parameters 

Total Uncertainty 
including structural 
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Parameter Uncertainty Methods 
(1) First-order approximations near global optimum (Kuczera etal)  
 Limitations 

• Assumes Model is Linear 
• Assumes Posterior Dist. Guassian  

 
(2) Generalized Likelihood Uncertainty Estimation (GLUE) 

method (Beven and co-workers) 
  
 
 
(3) Markov Chain Monte Carlo (MCMC) methods 
 (Vrugt and others) 
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Flow Ranges instead of point estimates  
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Evolving Directions 

 Advances in Parameter Estimation 
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Land-Surface Model  

RHODE ISLAND
CONNECTICUT

FLORIDA

MISSISSIPPI

WEST
VIRGINIA

WASHINGTON

OREGON
IDAHO

MONTANA

WYOMING

NORTH
DAKOTA

SOUTH
DAKOTA

NEBRASKA
IOWA

MINNESOTA

WISCONSIN

ILLINOIS

INDIANA OHIO

MISSOURIKANSASCOLORADO

UTAH
NEVADA

CALIFORNIA

ARIZONA NEW MEXICO

OKLAHOMA
ARKANSAS

KENTUCKY

VIRGINIA

TEXAS

GEORGIA

ALABAMA

SOUTH
CAROLINA

NORTH CAROLINA

TENNESSEE

PENNSYLVANIA

MARYLAND

NEW JERSEY

NEW YORK

VERMONT

MAINE

DELAWARE

LOUISIANA

MICHIGAN

MASSACHUSETTSNEW HAMPSHIRE



Center for Hydrometeorology and Remote Sensing, University of California, Irvine 

 Multi-Objective  Approaches   

M(θ) 

Model 

Radiation 

Inputs  Outputs  
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Multi-Criteria Calibration Concept 

θ1  

θ2  

F1(θ) 

F2(θ) 
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Multi-Criteria Calibration Approach 
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Gupta, Sorooshian, Yapo, WRR, 1998 



Center for Hydrometeorology and Remote Sensing, University of California, Irvine 

Multi-Objective Optimization Problem 

This image cannot currently be displayed.

MOCOM Algorithm: 

Does NOT require conversion 
to a sequence of single optimization problems 

Simultaneously finds  
several Pareto Solutions  
in a Single Optimization 
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ARM-CART SGP Site 

100 km 

Grid: ~100,000 km2 

Luis A. Bastidas Z.  (lucho@hwr.arizona.edu)  
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Single- & Multi-Flux Calibrations 
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AGU Monograph – Now Available 
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End of Lecture III  
Thank You For Listening  

The Rio Grande River,  NM   Photo:  J. Sorooshian  2005 
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