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Objectives

Demonstrate how statistical methodologies for spatio-temporal data can
be applied to model climate-sensitive disease risk.

Analyze and visualize spatio-temporal data and model results.

Evaluate predictive validity of probabilistic forecasts.
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Dengue in Brazil

Dengue transmitted by Aedes aegypti mosquitoes

Severe joint and muscle pain (rarely fatal) — ‘Break-bone fever’

More than 3 million cases in Brazil 2001-2009

2008 epidemic: 787,726 cases, 448 deaths

Seasonal pattern: increases in Jan-May when climate warmer/humid

(Center for Disease Control Public Health Image Library and BBC)



Temporal variability in dengue in Brazil

Monthly dengue counts for main regions of Brazil 2001-2009



Spatial variability in dengue in Brazil

Total dengue cases in microregions (558) 2001-2009



Dengue transmission

Human drivers, e.g.

population growth/urbanisation/poverty
(substandard housing)

abundance of water-storage containers

Environmental drivers, e.g.

Rainfall
(filling of containers)

Temperature/humidity
(mosquito development)

Environmental Health Perspectives, 2008



Research Aim

Develop a modelling framework to provide
spatio-temporal probabilistic forecasts of
dengue risk.

To what extent can spatio-temporal variations
in dengue risk be accounted for by climate
variations?

Which observed and unobserved non-climatic
confounding factors should be incorporated?



Is climate information useful in a dengue
Early Warning System (EWS) for Brazil?

How well can the developed model
predict future and geographically
specific dengue epidemics?

How does this compare with current
‘surveillance and response’ approach in
Brazil (observe early dengue cases
Dec/Jan then estimate epidemic
potential for late austral summer)?

How can early warnings of dengue
epidemics based on climate information
be effectively communicated to public
health decision makers?



Disease and Demographic Data

Disease data SINAN-DATASUS

Monthly dengue cases Jan 2001 - Dec 2009

Spatial unit: microregion

Census/cartographic data SIDRA-IBGE

% urban population

Altitude

Administrative region

Zone or Biome (e.g. Atlantic/Amazon
Rainforest)

Overall dataset: 108 months, 558 locations

DIR= yst
pst

× 100, 000

Low: DIR < 100
Med: 100 < DIR < 300

High: DIR > 300



Dengue in relation to altitude, urban population and zone

(a) Altitude, (b) % urban population, (c) geographic zone



Geographically specific annual cycle



Gridded climate data (2.5◦ × 2.5◦)

Average precipitation rate (GPCP)

Reanalysis average temperature (NCEP/NCAR)

Precipitation Temperature

Dec-Feb climatology (2000-9)



El Niño Southern Oscillation

Precipitation

Temperature

Correlation Oceanic Niño Index (ONI) vs Dec-Feb precipitation & temperature



Microregions and climate grid



Time lag considerations



Model framework: Generalised Linear Model (GLM)

yst ∼ NegBin(µst , κ)

logµst = log est︸ ︷︷ ︸
offset

+α + δ1t′(t) + δ2s′(s) + δ3s′(s)t′(t)︸ ︷︷ ︸
factors

+
∑

j

γjwjst︸ ︷︷ ︸
non−climate

+
∑

j

βjxjst +
∑

j

βjs′(s)xjst︸ ︷︷ ︸
climate

yst dengue count for microregion s = 1, . . . , 558 and time t = 1, . . . , 108

µst mean dengue count

κ scale parameter

est = pstπ, pst population in microregion s and time t, π overall average dengue rate

xjst precipitation, temperature, ONI

wjst altitude and population density

δ1t′(t) calendar month, t′(t) = 1, . . . , 12 (categorical variable)

δ2s′(s) zone s′(s) = 1, . . . , 8 (categorical variable)

δ3s′(s)t′(t) interaction between calendar month and zone 16



Model selection

Comparison of models with increasing complexity

Model Deviance R2
D p n − p AIC BIC

Null model 63007 0 2 60262 404321 404330
Climate model 61882 0.21 5 60259 389550 389586
Non-climate model 61495 0.33 99 60165 380425 381308
Combined model 60520 0.39 123 60141 374515 375614
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Selected results - GLM

Observed and model fit DIR (a) Amazon Rainforest, (b) Caatinga, (c) Cerrado, (d) NE Atlantic

Rainforest, (e) Pampa, (f) Pantanal, (g) SE Atlantic Rainforest and (h) S Atlantic Rainforest
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Selected results - GLM

Parameter estimates (standard error) for climate covariates in
Brazilian zones

Zone precipitation temperature ONI
Amazon Rainforest -0.005 (0.007) -0.217 (0.019) -0.157 (0.034)
Caatinga -0.070 (0.009) -0.02 (0.029) -0.018 (0.054)
Cerrado 0.068 (0.01) 0.135 (0.028) -0.408 (0.055)
North East Atlantic Rainforest 0.196 (0.02) 0.089 (0.039) -0.223 (0.065)
Pampa -0.003 (0.07) 0.347 (0.12) -0.357 (0.174)
Pantanal 0.437 (0.112) 0.384 (0.126) -1.345 (0.187)
South East Atlantic Rainforest 0.041 (0.014) 0.466 (0.029) -0.611 (0.055)
South Atlantic Rainforest 0.337 (0.019) 0.85 (0.031) -0.096 (0.064)

Estimates in bold face are significant at the 0.05 level.
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Selected results - GLM

Rio de Janeiro Salvador da Bahia
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How to account for unexplained variance?

GLM fails to capture spatio-temporal dengue variability.

population immunity to circulating serotype.
health interventions/vector control measures.

Problem: lack of data to model disease system.

Solution:

Early cases - surrogate for unobserved and unmeasured spatio-temporal
confounding factors.
Hierarchical model - add extra level uncertainty using random effects.
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Accounting for unknown confounding factors

Early cases

Idea: current incidence can be partly explained by past values

Problem: short time lag, not feasible for advance warning of an
impending epidemic

Compromise: dengue risk three month previous zst = log( yst−3

est−3
)

Represent increased mosquito populations/circulation new serotype?

Random effects

Unobserved latent structures

Overdispersion

Temporal correlation

Spatial clustering
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Selected Generalised Linear Mixed Model framework

yst |φs , νs , ωt′(t) ∼ NegBin(µst , κ); s = 1, . . . , 558; t = 1, . . . , 108

logµst = log est︸ ︷︷ ︸
offset

+α + δ1t′(t) + δ2s′(s) + δ3s′(s)t′(t)︸ ︷︷ ︸
month+zone factors

+ γ1w1st + γ2w2s︸ ︷︷ ︸
non-climate vars: pop dens+altitude

+β1s′(s)x1,s,t−2 + β2s′(s)x2,s,t−2 + β3s′(s)x3,t−6︸ ︷︷ ︸
climate vars: precip+temp+ONI

+ δzst︸︷︷︸
early cases

+ φs + νs︸ ︷︷ ︸
spatial random effects

+ ωt′(t)︸ ︷︷ ︸
monthly random effects

φs ∼ N(0, σ2
φ)

(νs) ∼ CAR(σ2
ν)

ω1 = 0, ωt′(t) ∼ N(ωt′(t)−1, σ
2
ω); t′(t) = 2, . . . , 12

σ2
λ ∼ Ga(0.5, 0.0005) , λ = (φ, ν, ω) , κ ∼ Ga(0.5, 0.0005).



Selected GLMM model framework

Climate signal is weak but statistically significant.

Precipitation and temperature averaged over preceding 3 month
period, 2 month lag with dengue.

ONI lagged 6 months with dengue, 4 months with climate variables.

Early cases lagged 3 months, slight improvement to spatio-temporal
variation.

Random effects are important:

Unobserved confounding factors (population immunity to circulating
serotype, health interventions/vector control measures)

Overdispersion

Temporal correlation and spatial clustering

South East Brazil: peak dengue season February-April (FMA)



Auto-correlated annual cycle



Selected results - GLMM, SE Brazil

precipitation temperature ONI

Climate coefficient posteriors

Observed vs model fit, 2001-2009



Multiplicative decomposition dengue risk, FMA season

Non-epidemic year (2005) and epidemic year (2008)
Climate Previous cases Model Observed



Comparison of GLMM and current surveillance model

Current surveillance model (CSM):

yst ∼ NegBin(µst , κ)

logµst = log est + α + δzst
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Posterior predictions selected microregions 2008-2009

Belo Horizonte

Rio de Janeiro

São Jose dos Campos



Posterior prediction FMA 2008 epidemic, Rio de Janeiro

GLMM (p(DIR) > 300 = 0.75) CSM (p(DIR) > 300 = 0.37)

GLMM improvement to current practice

Inclusion of climate information and observed and unobserved
confounding factors improves model performance



ROC analysis epidemic threshold: 300 per 100,000

Posterior predictive results in 160 microregions for cases exceeding 300
per 100,000 at probability decision thresholds (40%, 50%, 60%)

Threshold Hit False Alarm Miss Correct Rejection PC HR FAR
60% 31 13 23 93 76% 57% 12%
50% 44 27 10 79 77% 81% 25%
40% 49 36 5 70 74% 91% 34%



Defining and visualising epidemic risk

Symmetric (tercile) and non-symmetric (100 and 300
cases per 100,000) category boundaries of the observed

distribution of DIR, FMA 2001-2007, SE Brazil



Visualising probabilistic forecasts 2008 epidemic



EUROBRISA

EURO-BRazilian Initiative for improving South American seasonal
climate forecasts http://eurobrisa.cptec.inpe.br/

Correlation between forecast and observed precipitation anomaly using the
integrated EUROBRISA forecasting system for the period 1981-2005. Forecasts

issued in November, valid for DJF season

http://eurobrisa.cptec.inpe.br/


Extending prediction lead-time with forecast climate

EUROBRISA forecast GPCP observed Observed categories



Conclusions & Future work

Conclusions

Climate accounts for some
variation in dengue risk

Important to account for
confounding factors

Potential for use of climate
information in Brazil dengue EWS
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Future work

Test model framework more fully in
other locations

Extent to which climate forecasts
extend predictive lead time

Addition of serotype information

Addition of health
intervention/prevention information

Representative movement of
human hosts

Incorporate better understanding of
disease transmission process
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