

2263-12

Beyond the Standard Model: Results with the 7 TeV LHC Collision Data

19 - 23 September 2011

Search for new top-like quarks in CMS experiment

Yeng-Ming Tzeng Nat. Taiwan University Taiwan, China

Search for a Vector-like Top Quark T \rightarrow tZ at $\sqrt{s} = 7$ TeV in CMS

Beyond the Standard Model : results with the 7 TeV LHC Collision Data Sep. 20th (2011), ICTP, Trieste (Italy)

Outline

Search for a vector-like top quark

- What's a vector-like top quark?
- Why are we looking for it?

• T \rightarrow tZ analysis in the CMS detector

- Event selection
- Background estimation
- Systematic uncertainties
- Result

Conclusion

Vector-like Top Quark

Chiral fermions in the SM

• All fermions obey chiral symmetry ($u = u_L + u_R$)

$$u_L \equiv \frac{(1-\gamma^5)}{2}u \qquad u_R \equiv \frac{(1+\gamma^5)}{2}u$$

(where u_L and u_R stand for the left-handed and right-handed states)

• Vector-like fermions

• u_L and u_R have equal behavior under SU(2)

• Vector-like charge 2/3 top quark (T)

- Flavor changing neutral current (FCNC) via tree level.
- BF of T→tZ and T→tH can reach to 50% (JHEP 1011:159,2010).
- Assuming BF(T \rightarrow tZ) close to 100% if $m_h > m_T$.

Motivation

• Many theories postulate vector-like quarks, for example :

- Warped extra dimensions scenario : ADD + RS (e.g. <u>Phys.Rev.Lett.83:3370-3373,1999</u>)
- Little Higgs model (e.g. Nucl.Phys.Proc.Suppl.117 (2003)40)

• Both models can give a solution to hierarchy problem (SM)

- Hierarchy problem between weak and Planck scale
- Warped extra dimensions (4+n)
 - Introduce <u>vector-like quarks</u> since chiral quarks can not exist when n is odd.
- Little Higgs model
 - Introduce <u>a vector-like top quark</u> in order to cancel the divergency from the top loop

Analysis Strategy

• The full decay chain : $T\overline{T} \rightarrow t \ Z \ \overline{t} \ Z \rightarrow b\overline{b}W^+W^-ZZ$

(2 W-bosons + 2 Z-bosons + 2 b-jets)

 Final states : 	Decay Mode	Branching Fraction	
	1L+4∼8J (1W _{Iv})	324/900	
	2L+2~6J (2W _{Iv})	81/900	
	2L+6∼8J (1Z _{II})	72/900	
	3L+4~6J (1W _{Iv} + 1Z _{II})	72/900	
	4L+2~4J (2W _{Iv} + 1Z _{II})	18/900	
	4L+6J (2Z _{II})	4/900	
BF~5.4%	5L+4J (1W _{Iv} + 2Z _{II})	4/900	$BF(W \rightarrow Iv) = 1/3$
for e,µ	6L+2J (2W _{Iv} + 2Z _{II})	1/900	$BF(Z \rightarrow + ^{-}) \sim 1/10$

Clean states \Rightarrow at least 3 leptons (including Z_{II}) + at least 2 jets

Beyond the Standard Model (ICTP in Trieste, Italy)

Selection Criteria

• Vertex selection:

• degrees of freedom>4, $|\rho| < 2$ cm, and |z| < 24 cm

Objects selection:

- N(lep) \geq 3, Z_{II} (60GeV~120GeV), and N(jet) \geq 2
- **Residual S**_T = Σ (lep+jet pT) Σ (leading 2lep+2jet pT) > 80GeV

Plots in a Control Region

• Selection :

- At least 3 leptons
- •Z→II
- N(jet) ≥ 2 + Residual S₁ > 80 GeV

Resulting Plot (Signal Region)

- Selection :
- At least 3 leptons
- •Z→II
- N(jet) ≥ 2 +
 Residual S_T > 80 GeV

Background Classifications

• \leq 2 prompt leptons ($B_{2\ell}$)

- Estimated with data-driven method
- Z+jets, tt
 +jets... (QCD processes also included in this estimation)
- 3 prompt leptons (B31)
 - Obtained from MC

Data-Driven Bkg. Estimation

4

ε_{fe}= 1.9±0.1%

Z + loose e

Systematic Uncertainties

Source	$\Delta \epsilon / \epsilon [\%]$	$\Delta B_{2\ell}$	$\Delta B_{3\ell}$	$\Delta B_{\rm total}$
Control region statistics	-	0.27	-	0.27
Luminosity	6	0	0.02	0.02
Trigger efficiency	2.8	-	-	-
Background normalization	-	0.03	0.07	0.08
Lepton (Reconst./ID/Isolation)	19	0.01	0.05	0.06
PDF	0.4-0.8	0.04	0.01	0.05
Jet energy scale	0.5-0.9	0.05	0.05	0.10
Jet resolution	0.1-0.5	0.01	0.01	0.02
Pile-up jets	2.8	0.03	0.04	0.07
Simulated sample statistics	3.4-3.7	-	0.03	0.03
Sum	20	0.28	0.11	0.31

Yields and Efficiency

Process	Cross-section (pb)	ϵ [%]	Yield
$T\overline{T}, M(T) = 250 \text{ GeV}/c^2$	20.5 (NLO)	14.5 ± 3.0	30.4
$T\overline{T}$, $M(T) = 300 \text{ GeV}/c^2$	7.29 (NLO)	24.6 ± 5.0	18.4
$T\overline{T}$, $M(T) = 350 \text{ GeV}/c^2$	2.94 (NLO)	29.9 ± 6.8	8.99
$T\overline{T}$, $M(T) = 400 \text{ GeV}/c^2$	1.30 (NLO)	30.3 ± 6.9	4.03
$T\overline{T}$, $M(T) = 450 \text{ GeV}/c^2$	0.617 (NLO)	33.8 ± 7.7	2.13
$T\overline{T}$, $M(T) = 500 \text{ GeV}/c^2$	0.310 (NLO)	34.4 ± 7.9	1.09
$T\overline{T}, M(T) = 550 \text{ GeV}/c^2$	0.162 (NLO)	33.6 ± 7.9	0.56
Background with two rea	0.45 ± 0.28		
Background with three re	0.28 ± 0.11		
Sum (estimated backgrou	0.73 ± 0.31		
Data (191 pb ⁻¹)	0		

Exclusion Limit

Observed limits on X-sec using a Bayesian approach at

CMS 191 $pb^{-1} \sqrt{s} = 7 TeV$ • By comparing observed TT) [pb] limits to the NLO X-sec : Limit at 95% CL: $M_T > 417 \text{ GeV/c}^2$ 10 o(pp → observed limit $\ggg 2\,\sigma$ TeV (Berger and C 1σ **CMS** Preliminary 10^{-1} 350 400 450 500 550 250 300 M_{T} [GeV/c²]

- We report the search for a vector-like charge 2/3 top quark
 T→tZ in pp collision at 7 TeV
- The first result with 191 pb⁻¹ CMS data is presented :
 - Assuming a 100% branching fraction for the decay
 - $T \rightarrow tZ$, we can set T-quark mass limit up to 417 GeV

Beyond the Standard Model (ICTP in Trieste, Italy)

Backups

Background Classifications

• **B**_{2l} (estimated with data-driven method)

• 2 prompt leptons + 1 non-prompt lepton :

Z+jets (49%) and t**t**+jets (11%)

• 3 non-prompt leptons :

QCD processes (Also included in this estimation)

• B₃₁ (obtained from MC)

• 3 prompt leptons :

tt̄Z(W)+jet (14%), WZ(17%), and ZZ(9%)

Data-Driven Bkg. Estimation (Cont.)

→ Within statistical error 🔨

• B₂ (for Z+jets and tt+jets) estimation :

• Bkg. control region :

additional LL + 2TL(Z) and keep other selections Z/tt + jets MC truth value : 0.43

Yeng-Ming Tzeng (NTU) 09/20/2011 18

Systematic Uncertainties

- Control region statistics:
 - Observed data events in control region
- Luminosity & Xsec :
 - Vary the values (lumi±4.5%, tt±11.4%, ttX±50%, W+jets±4%, Z+jets±3%, WW±35%, WZ ±42%, ZZ±27%) in calculation
- Lepton ID, Isolation, etc :
 - 100% difference for MC&data from Z tag&probe + 50% difference of Z & T from GenInfo
 → 7.7% for each electron and 7.2% for each muon
- PDF (hep-ph/0508110) :
 - Using 40 uncertainty sets (CTEQ61) to re-weight event
- Jet energy scale :
 - Uncertainty associated with Jet pT and η .
- Jet resolution :
 - Increasing 10% of Jet's pT resolution
- Pile up :
 - By varying the data pile-up number with ±1 RMS of the distribution. The uncertainties in signal and bkg estimation are 2.8% and 9.8%, respectively.
- MC statistics :
 - Error propagation with actual MC counts

Yields and Efficiency

Process	Cross-section (pb)	ϵ [%]	Yield
$T\overline{T}, M(T) = 250 \text{ GeV}/c^2$	20.5 (NLO)	14.5 ± 3.0	30.4
$T\overline{T}, M(T) = 300 \text{ GeV}/c^2$	7.29 (NLO)	24.6 ± 5.0	18.4
$T\overline{T}, M(T) = 350 \text{ GeV}/c^2$	2.94 (NLO)	29.9 ± 6.8	8.99
$T\overline{T}, M(T) = 400 \text{ GeV}/c^2$	1.30 (NLO)	30.3 ± 6.9	4.03
$T\overline{T}, M(T) = 450 \text{ GeV}/c^2$	0.617 (NLO)	33.8 ± 7.7	2.13
$T\overline{T}, M(T) = 500 \text{ GeV}/c^2$	0.310 (NLO)	34.4 ± 7.9	1.09
$T\overline{T}, M(T) = 550 \text{ GeV}/c^2$	0.162 (NLO)	33.6 ± 7.9	0.56
tī + jets	158 (CMS)	$(2.6 \pm 2.0) \times 10^{-4}$	0.08
Z + jets	2.9×10^3 (CMS)	$(6.3 \pm 5.4) \times 10^{-5}$	0.35
WZ inclusive	18.0 (NLO)	$(3.3 \pm 0.5) \times 10^{-3}$	0.12
ZZ inclusive	5.9 (NLO)	$(5.9 \pm 0.6) \times 10^{-3}$	0.07
$t\bar{t} + W + jet$	0.144 (LO)	$(1.3 \pm 1.3) \times 10^{-2}$	0.004
$t\bar{t} + Z + jet$	0.094 (LO)	$(5.4 \pm 1.3) \times 10^{-1}$	0.10
Expected background from	0.71		
Background with two real	0.45 ± 0.28		
Background with three re-	0.28 ± 0.11		
Sum (estimated background)			0.73 ± 0.31
Data (191 pb ⁻¹)	0		