

2263-6

Beyond the Standard Model: Results with the 7 TeV LHC Collision Data

19 - 23 September 2011

New Physics Searches Involving Top Quarks with the ATLAS Detector

Nuno Filipe Castro *LIP Portugal*

New Physics Searches Involving Top Quarks with the ATLAS Detector

Nuno Castro LIP-Minho

on behalf of the ATLAS Collaboration

Beyond the Standard Model: Results with the 7 TeV LHC Collision Data ICTP, Trieste, 19-23 September 2011

Outline:

- The top quark and BSM physics
- New physics in top production and decay
- Searches for top-like BSM signatures

Results based on:

- 2010 ATLAS data: $\int Ldt \sim 35 \text{ pb}^{-1}$
- 2011 ATLAS data: $\int Ldt \sim 1 \text{ fb}^{-1}$

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults

The top quark

- Top quark completes the 3 family structure of the SM
 - top is the weak-isospin partner of the *b*-quark
 - spin = 1/2
 - charge = +2/3 |e|

Three Generations of Matter

- Top quark is the heaviest known quark $(m_t = 173.2 \pm 0.9 \text{ GeV}, \text{CDF} + \text{D0}, \text{arXiv:}1107.5255)$
- Top decays (almost exclusively) through $t \rightarrow bW$ $BR(t \rightarrow sW) \leq 0.18\%$, $BR(t \rightarrow dW) \leq 0.02\%$
- $\Gamma_t^{SM} = 1.42 \text{ GeV}$ (including m_b , m_W , α_s , EW corrections) • $\Lambda_{QCD}^{-1} = (100 \text{ MeV})^{-1} = 10^{-23} \text{ s}$ (hadronization time) • $\tau_t \ll 10^{-23} \text{ s}$
 - \Rightarrow top decays before hadronization

The top quark as a probe for beyond SM physics

- Large mass of the *t*-quark:
 - $\lambda_t = \sqrt{2}m_t/v \sim 1$ Register special role in EWSB?
 - top and W masses constrain the Higgs mass

- BSM physics often has consequences in the top sector:
 - $t\bar{t}$ and single top production can be affected by BSM models
 - Wtb vertex: can have a BSM structure
 - rare top decays: BSM models can increase the BR of t-quark decays via FCNC
 - Exotic Higgs Bosons: large coupling to the top
 - Incorporate Gravity using Extra Dimensions: many models predict new states with strong coupling to the top
 - 4th generation quarks: often decay to *t*-quarks or look like a heavy *t*

Single top production at LHC

Channel	SM prediction	ATLAS measurement
S	4.6 ± 0.3 pb	< 26.5 pb (ATLAS-CONF-2011-118)
Wt	15.7 ^{+1.3} pb	< 39 pb (ATLAS-CONF-2011-104)
t	64.6 ^{+3.3} pb	90 ⁺³² ₋₂₂ pb (ATLAS-CONF-2011-101)

(see talk by Muhammad Alhroob for details)

Good agreement with SM expectation found

tt production at the LHC

- $\sigma(t\bar{t})$ @ 7 TeV ~ 164.6^{+11.4}_{-15.7} pb (arXiv:0907.2527)
- Iepton+jets topology: $BR(t\bar{t} \rightarrow bq\bar{q}'\bar{b}\ell\nu; \ \ell = e^{\pm}, \mu^{\pm}, \tau^{\pm}) \sim 44\%$
- dileptonic topology: $BR(t\bar{t} \rightarrow b\bar{b}\ell\nu\ell\nu; \ \ell = e^{\pm}, \mu^{\pm}, \tau^{\pm}) \sim 10\%$

1% τ+τ

 τ +

$t\bar{t}$ production at the LHC: events seen by ATLAS

Measurement of $\sigma(t\bar{t})$

ATLAS Preliminary, $\sqrt{s} = 7$ TeV (ATL-CONF-2011-108)

Good agreement with SM expectation found

Search for $t\bar{t}$ resonances

Standard $t\bar{t}$ selection in ℓ +jets and dilepton channels

ℓ+jets channel (ATLAS-CONF-2011-087)

- isolated lepton (e or μ)
- missing transverse energy (*E*^{miss}_T)
- 4 or more jets (anti- k_T , $\Delta R = 0.4$)
- at least 1 *b*-tagged jet

dilepton channel (ATLAS-CONF-2011-123)

- 2 isolated leptons (*ee*, $\mu\mu$ or $e\mu$)
- *ee*, $\mu\mu$: $m_{\ell\ell}$ outside m_Z window
- *e*μ: large scalar sum of *p*_T of all hard objects in the event (*H*_T)
- $E_{\mathrm{T}}^{\mathrm{miss}}$
- 2 or more jets

Real Data in agreement with the SM expectation in both channels

Search for $t\bar{t}$ resonances

l+jets

dileptons

- *l*+jets channel: limits set on narrow Z'-like decaying into *tt* no exclusion yet for benchmark (topcolor-assisted technicolor) Z' model (see talk by Nicolas Berger)
- dilepton channel: limits set on broader g_{KK} -like resonances $m_{g_{KK}} < 0.84$ TeV excluded at 95% CL

Search for *tt* resonances: boosted objects

- For higher regions of p_T^t or $m_{t\bar{t}}$ the top decay products are highly boosted and can be reconstructed as only one jet
- Understanding boosted objects is very important for top physics and searches for new physics

Charge asymmetry in $t\bar{t}$ production

- At LO tt
 t
 roduction is symmetric under charge conjugation
 in the SM (small asymmetry expected at NLO)
- Several BSM processes can alter this asymmetry, either with abnormal vector or axial vector couplings or via interference with the SM

$$A_C = \frac{N(\Delta|Y| > 0) - N(\Delta|Y| < 0)}{N(\Delta|Y| > 0) + N(\Delta|Y| < 0)}$$

where $\Delta|Y| = |Y_t| - |Y_{\overline{t}}|$

Distributions are unfolded to parton level

 $\begin{array}{l} A_{C} = -0.009 \pm 0.023 \; (\text{stat}) \pm 0.032 \; (\text{syst}) \; (e + \text{jets}) \\ A_{C} = -0.028 \pm 0.019 \; (\text{stat}) \pm 0.022 \; (\text{syst}) \; (\mu + \text{jets}) \\ A_{C} = -0.024 \pm 0.016 \; (\text{stat}) \pm 0.023 \; (\text{syst}) \; (\text{comb}) \end{array}$

SM expectation (MC@NLO): $A_C = 0.006$ No evidence for new physics found (ATLAS-CONF-2011-106, see talk by Rachik Soualah for details)

tt spin correlations

- While *t*-quark pairs produced at hadron colliders are unpolarized, their spins are correlated
- Different BSM scenarios predict different production and decay dynamics of the top quark, which could be detected by measuring the tt spin correlations
- In the dilepton channel $\Delta \phi_{\ell\ell}$ can distinguish the SM expectation from a no-correlation scenario

[Phys. Rev D81 (2010) 074024]

$${\sf A} = rac{{\sf N}_{\it like} - {\sf N}_{\it unlike}}{{\sf N}_{\it like} + {\sf N}_{\it unlike}}$$

where N_{like} (N_{unlike}) are the number of events where t and \overline{t} spins are aligned (anti-aligned)

(ATLAS-CONF-2011-117)

• fit done with 2 templates: SM spin correlation (f^{SM}) and uncorrelated hypothesis (f^{UC})

•
$$f^{SM} + f^{UC} = 1$$

$t\bar{t}$ spin correlations

- Different spin basis can be defined; in the SM: [Phys. Lett. B609 (2005) 271]
 - helicity basis: $A_{helicity}^{SM} = 0.32$
 - maximal basis: $A_{maximal}^{SM} = 0.44$
- Considering *ASM* in a particular basis, the measured spin correlation coefficient can be obtained:

 $A^{measured} = A^{SM} \cdot f^{SM}$

Channel	f^{SM}	$A_{helicity}$	A _{maximal}
e^+e^-	0.89 ± 0.40 (stat) ± 0.44 (syst)	0.28 ± 0.13 (stat) ± 0.14 (syst)	0.39 ± 0.18 (stat) ± 0.19 (syst)
$\mu^+\mu^-$	$0.67 \pm 0.37 \text{ (stat)} ^{+0.50}_{-0.30} \text{ (syst)}$	0.22 ± 0.12 (stat) $^{+0.16}_{-0.10}$ (syst)	$0.30 \pm 0.16 \text{ (stat)} ^{+0.22}_{-0.13} \text{ (syst)}$
$e^{\pm}\mu^{\mp}$	1.46 ± 0.33 (stat) ± 0.51 (syst)	0.47 ± 0.11 (stat) ± 0.16 (syst)	0.64 ± 0.15 (stat) ± 0.23 (syst)
combination	$1.06 \pm 0.21 \text{ (stat)} ^{+0.40}_{-0.27} \text{ (syst)}$	$0.34 \pm 0.07 \text{ (stat)} ^{+0.13}_{-0.09} \text{ (syst)}$	$0.47 \pm 0.09 \text{ (stat)} ^{+0.18}_{-0.12} \text{ (syst)}$

In agreement with the SM expectation

W polarisation in $t \rightarrow bW$ decays (ATLAS-CONF-2011-122)

Fit of the $\cos \theta^*$ using templates realize evaluation of angular asymmetries realize BSM structure of the *Wtb* vertex changes *W* helicity fractions and angular asymmetries

W polarisation in $t \rightarrow bW$ decays (ATLAS-CONF-2011-122)

 $\bowtie \ell + jets$ and dilepton channels

Effective *Wtb* vertex from dim-6 operators

$$\mathcal{L} = -\frac{g}{\sqrt{2}} \bar{b} \gamma^{\mu} (V_L P_L + V_R P_R) t W_{\mu}^{-}$$
$$-\frac{g}{\sqrt{2}} \bar{b} \frac{i\sigma^{\mu\nu} q_{\nu}}{M_W} (g_L P_L + g_R P_R) t W_{\mu}^{-}$$
$$V_L \equiv V_{tb} \sim 1 \text{ (within SM)}$$
$$V_R, q_R, q_L \Rightarrow \text{anomalous couplings}$$

	templates ℓ+jets	templates dilepton	asymmetries all
F_0	0.57 ± 0.11	0.75 ± 0.08	0.70 ± 0.10
F_L	0.35 ± 0.06	0.25 ± 0.08	0.31 ± 0.07
F_R	0.09 ± 0.09	fixed to 0	-0.01 ± 0.04
	$egin{array}{ccc} A_+ = & 0 \ A = & -0 \end{array}$	$0.54 \pm 0.04 \\ 0.85 \pm 0.02$	
	🖙 No evic	dence for B	SM physics

Search for FCNC

Theoretical predictions for the BR of FCNC top quark decays

[Acta Phys. Pol. B35 (2004) 2695]

- In the SM flavour changing neutral currents (FCNC) are forbidden at tree level and much smaller than the dominant decay mode (t → bW) at one loop level
- BSM models predict higher BR for top FCNC decays
 probe for new physics

Search for FCNC (ATLAS-CONF-2011-061)

• $t\overline{t} \rightarrow bWqZ \rightarrow b\ell\nu q\ell\ell$ topology

(2010 data, $\int L dt = 35 \text{ pb}^{-1}$)

single lepton trigger (*e* or μ) 2 isolated leptons, same flavour and opp. charges ($p_T > 25, 20 \text{ GeV}$) $\geq 2 \text{ central jets}$ $\not{\!\!\!E}_T > 20 \text{ GeV}$ $\gamma \text{ veto } (p_T > 15 \text{ GeV})$ 3rd lepton ($p_T > 15 \text{ GeV}$)

No evidence for signal found

■ 95% CL limits on $BR(t \rightarrow qZ)$:

	observed	(-1σ)	expected	$(+1\sigma)$
w/o syst	16%	8%	11%	15%
w/ syst	17%	9%	12%	16%

m_t^{reco} (t->qZ) [GeV]

Search for FCNC (ATLAS-CONF-2011-061)

• $qg \rightarrow t \rightarrow bW \rightarrow b\ell\nu$ topology

(2010 data, $\int Ldt = 35 \text{ pb}^{-1}$)

u, c

Regional network analysis performed

No evidence for signal found

95% CL upper limits on the anomalous FCNC single top-quark production $qg \rightarrow t \rightarrow b\ell v$

		expected		observed
	(-1σ)	median	$(+1\sigma)$	
only normalization uncertainties	9.6 pb	13.7 pb	19.7 pb	15.6 pb
with all systematics	12.0 pb	17.4 pb	25.6 pb	17.3 pb

Search for $T \rightarrow tA_0$ ($t\bar{t}$ with anomalous E_T^{miss})

- Search for pair production of exotic top partener (*T*), decaying to *tt* and 2 stable, neutral, weakly-interaction particles (*A*₀)
- In SUSY models with *R*-parity conservation *T* is the stop and *A*₀ the lightest SUSY particle

22/27

- The topology is $t\bar{t}$ with an anomalous $E_{\rm T}^{\rm miss}$ contribution
- ℓ +jets analysis w/o btagging and w/ stronger cuts on $E_{\rm T}^{\rm miss}$ and transverse mass of $\ell \nu$ (m_T)

Search for $T \rightarrow tA_0$ ($t\bar{t}$ with anomalous E_T^{miss})

- No evidence for new physics
- 95% CL limits of $\sigma \times BR$ for different masses of T and A_0
- Assuming a model of exotic fourth generation up-type quarks [Phys.Rev.D81 (2010) 114027], these limits were converted into mass exclusion regions

Search for 4th generation quarks

- $Q_4 Q_4 \rightarrow q \bar{q} \ell^- \ell^+ \nu \bar{\nu} (q \neq t)$ search (ATLAS-CONF-2011-022, 37 pb⁻¹)
- $t\overline{t}$ dilepton as base selection
- reconstruct a "colinear" mass by scanning allowed neutrino momenta and looking for consistent Q₄ mass

• collinear mass distribution fitted to set limits

Search for $d_4 d_4$ production

- Inclusive same-sign lepton search [arXiv:1108.0366, 34 pb⁻¹]
- Sensitive to $d_4 d_4 \rightarrow ttWW \rightarrow bbjjjj\nu\nu\ell^{\pm}\ell^{\pm}$
- Set limits on $\sigma(d_4d_4) \times BR(d_4 \rightarrow tW)^2$
 - Cut on $E_{\rm T}^{\rm miss}$
 - Fitting with jet multiplicity distribution templates

Summary

- A variety of ATLAS analysis allowing to probe new physics associated to the top and top-like quarks were presented
 - Top production
 - *t*t resonances
 - Charge asymmetry in $t\bar{t}$ production
 - *tt* spin correlations
 - W polarisation in t decays and Wtb vertex structure
 - FCNC in the top sector
 - New phenomena in $t\bar{t}$ events with large $E_{\rm T}^{\rm miss}$
 - 4th generation quarks
- The top quark looks quite SM-like (no evidence for new physics seen so far)
- This is a very active field: stay tuned for news!

Nuno Castro is supported by FCT (project CERN/FP/116346/2010 and grant SFRH/BPD/63495/2009)

Backup Slides

The ATLAS detector

Length : ~ 46 m Diameter : ~ 24 m Weight : ~ 7000 tons ~10⁸ electronic channels 3000 km of cables

3-level trigger reducing the rate from 40 MHz to 200-300 Hz Muon Spectrometer ($|\eta|$ <2.7) : air-core toroids with gas-based muon chambers; Muon trigger and measurement with momentum resolution < 10% up to E_µ ~ 1 TeV

> HAD calorimetry ($|\eta| < 5$): segmentation, hermeticity Fe/scintillator Tiles (central), Cu/W-LAr (fwd) Trigger and measurement of jets and missing E_T E-resolution: $\sigma/E \sim 50\%/\sqrt{E \oplus 0.03}$

EM calorimeter ($|\eta| < 3.2$): Pb-LAr Accordion; e/ γ trigger, identification and measurement E-resolution: $\sigma/E \sim 10\%/\sqrt{E}$ Inner Detector ($|\eta|$ <2.5, B=2T): Si Pixels, Si strips, Transition Radiation detector (straws); Precise tracking and vertexing, e/TT separation Momentum resolution: $\sigma/p_T \sim 3.8 \times 10^{-4} p_T$ (GeV) \oplus 0.015 i.e. σ/p_T <2% for p_T < 35 GeV

Event selection

(slide from Muhammad Saleem talk)

Event yields: L = 0.70 fb⁻¹ (W polarisation analysis)

ℓ +jets channel

Process	Single electron channel	Single muon channel
tt	2200 ± 400	3200 ± 500
Single top	$120\pm~10$	$160\pm~10$
Misidentified leptons	$80\pm~80$	200 ± 200
W+jets	300 ± 160	500 ± 250
Z+jets	$30\pm~20$	$40\pm~20$
Diboson	5 ± 1	8± 1
Total predicted	2800 ± 400	4100 ± 600
Data	3006	4313

dilepton channel

Process	<i>ee</i> channel	$\mu\mu$ channel	$e\mu$ channel
tt	80 ± 20	160 ± 20	540 ± 50
Single top	3 ± 1	7 ± 1	22 ± 3
Misidentified leptons	2 ± 1	0 ± 1	30 ± 20
$Z (ightarrow ee/\mu\mu)$ +jets	$3\pm$ 3	4 ± 2	—
$Z (\rightarrow au au)$ + jets	2 ± 1	5 ± 1	26 ± 5
Diboson	2 ± 1	$4\pm~9$	$14\pm~2$
Total predicted	90 ± 20	180 ± 20	630 ± 60
Data	103	175	643

Probing the Wtb vertex: spin asymmetries

$$X = \text{top decay product} \qquad \Rightarrow \qquad \vec{p}_X = \text{momentum in } t \text{ rest frame}$$
$$\vec{p}_j = \text{jet momentum in } t \text{ rest frame}$$
$$Q = \cos(\vec{p}_X, \vec{p}_j) \qquad \Rightarrow \qquad A_X \equiv \frac{N(Q > 0) - N(Q < 0)}{N(Q > 0) + N(Q < 0)}$$
$$= \frac{1}{2} P \alpha_X \quad [P = 0.95 \ (t) \quad P = -0.93 \ (\bar{t})]$$

[PLB 476 (2000) 323]

Probing the *Wtb* vertex: single top production cross-section

 $\sigma = \sigma_{\text{SM}} \left(V_L^2 + \kappa^{V_R} V_R^2 + \kappa^{V_L V_R} V_L V_R + \kappa^{g_L} g_L^2 + \kappa^{g_R} g_R^2 + \kappa^{g_L g_R} g_L g_R + \dots \right)$

- the κ factors determine the dependence on anomalous couplings
- the κ factors are, in general, different for t and \overline{t} production
- the measurement of the single top production cross-section allows to obtain a measurement of $V_L (\equiv V_{tb})$ and bounds on anomalous couplings

W polarisation beyond helicity fractions

New idea to study top decays: [NPB840 (2010) 349]
 consider transverse and normal directions

$$\vec{q} \rightarrow W$$
 mom in *t* rest frame
 $\vec{s}_t \rightarrow \text{top spin}$
 $\vec{N} = \vec{s}_t \times \vec{q}$
 $\vec{T} = \vec{q} \times \vec{N}$
meaningful for polarised *t* decays
(e.g. in single top production)

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{\ell}^{X}} = \frac{3}{8} (1 + \cos\theta_{\ell}^{X})^{2} F_{+}^{X} + \frac{3}{8} (1 - \cos\theta_{\ell}^{X})^{2} F_{-}^{X} + \frac{3}{4} \sin^{2}\theta_{\ell}^{X} F_{0}^{X}$$
$$A_{\text{FB}}^{N} = \frac{3}{4} \left[F_{+}^{N} - F_{-}^{N} \right] \qquad A_{\text{FB}}^{N} \simeq 0.64 P \operatorname{Im} g_{R}$$

tt resonances: boosted objects

Search for charged Higgs $H \rightarrow c\bar{s}$ in top decays ATLAS-CONF-2011-094

Search for $H^+ \rightarrow \tau \nu$ (ATLAS-CONF-2011-138)

• Both the W and the τ decay hadronically