

2263-16

Beyond the Standard Model: Results with the 7 TeV LHC Collision Data

19 - 23 September 2011

Search for "Technicolour" at ATLAS

Nicolas Berger LAPP, Annecy France

at ATLAS

Searches for Technicolor

N N N

Nicolas Berger (LAPP Annecy) for the ATLAS collaboration

Technicolor overview

Technicolor: Alternate mechanism of EWSB → No fundamental Higgs boson

Introduce: A **new strong gauge interaction** \rightarrow typically some SU(N_{TC}).

New fermions sensitive to TC ("techniquarks") → typically N isospin doublets

EWSB:

TC coupling becomes large for $\Lambda_{TC} \sim O(100 \text{ GeV})$: \Rightarrow chiral symmetry breaking : $\langle Q_L Q_R \rangle \neq 0$, $\sim \Lambda_{TC}$.

 $\langle Q_L Q_R \rangle$ not invariant under SU(2) \otimes U(1) \Rightarrow EWSB

EW precision constraints, FCNC:

 \rightarrow "scaled-up QCD" models are excluded, but TC with a "**walking**" coupling is OK.

LSTC model

LSTC limits from Tevatron

- $\rightarrow \rho_{\text{T}}, \, \omega_{\text{T}}$ technimesons are easiest target
- \rightarrow Limits usually presented in (M(ρ_T), M(π_T)) plane
 - π_{T} mass affects allowed decay channels, BFs.

The ATLAS detector

LHC 2011 Dataset

LSTC in dilepton resonances

Search for resonances in I⁺I⁻ channel

General search for **narrow resonances** in e^+e^- and $\mu^+\mu^-$ final states performed.

- \rightarrow See presentation by Oliver Stelzer-Chilton yesterday
- \rightarrow Analysis mostly geared towards high-mass region (1 TeV)
- Limits can be reinterpreted in terms of LSTC

arXiv:1108.1582, submitted to PRL

 \rightarrow smaller signals at lower masses, but included in scope of original search

 $m_{\mu\mu}$ [GeV]11

Limit on $M(\rho_T)$

 \rightarrow Assume M(π_T) = M(ρ_T) – 100, GeV scan M(ρ_T) values

 \rightarrow Set 95% UL on M($\rho_{T})$ using the limit on production $\sigma.BR(I^{+}I^{-})$

Limit in M(ρ_T), M(π_T) plane

Topcolor in ttbar Resonances

Topcolor

Topcolor: mechanism to account for $m_t \gg m_{udscb}$ via top condensation \rightarrow Typically SU(3)₁₂xSU(3)₃xU(1)₁₂xU(1)₃, broken to SU(3)_cxU(1)_y

mainly for 1st & 2nd gen

mainly for 3rd gen

Extra U(1) factor \Rightarrow extra Z' with O(TeV) mass after SSB.

Here use model from **hep-ph/9911288** (Model IV) : Leptophobic Z' coupling only to quarks, width = 1.2% · M(Z')

ttbar Resonance Search

ATLAS-CONF-2011-087

- \rightarrow Search for Z' \rightarrow tt in **I+jets mode**: 1 hadronic + 1 leptonic top
- \rightarrow Use m_{tt} as search variable (Use W mass constraint to fix $p_z(v)$)
- \rightarrow See talk by Nuno Castro earlier today for more details

Topcolor Z' Results

 \rightarrow No data excess over expectations

 \Rightarrow Set limits : use Bayesian method, profiling systematics

Wjj at ATLAS

→ Technicolor models are important benchmarks for ATLAS exotic analyses
→ Some exclusion limits already beyond those of Tevatron experiments
→ Many more results to come as integrated luminosity keeps increasing

Walking TC coupling ?

 N_{f}

α

h. $Q^2 + 1000$ $= 11/2 + 1at^2 + 1000$

"Phase diagram" of SU(N) gauge theories with N_f fermions:

 $\frac{d\alpha}{d(\log Q)} = b\alpha^2 + c\alpha^3$ 2-loop RGE:

 \rightarrow suggests an IR fixed point for some values of N, N_f.

 \Rightarrow Theory is **conformal** in the IR

 \rightarrow it is likely that the onset of confinement occurs inside this conformal window

 \Rightarrow Can have theories which are both conformal and confining : the walking regime.

Strong couplings in lower part of the plot \Rightarrow need lattice for firm predictions...

Some estimations shown here for illustration

T. Appelquist et al. PRD 58 (1998) 105017

QED-

like

α

formal window Confinement

Conformal

Walking

QCD

ike

 O^2

 Q^2

Comparison of TC and Z'

Alternate ρ_T limit plot

Extra Z' plots : p_T

Extra Z'plots : rapidities

Extra Z' Plots

Background estimate

W+jets data-driven scale factors

Control region with 30 < MET < 80 GeV 40 < M_T^W < 80 GeV b-tagging veto

Fit of the jet multiplicity distribution to determine a scale factor for each parton multiplicity sample

Shape from MC

Multijet QCD data-driven shape and scale

Jet-triggered events Jet with high EM fraction used as fake lepton Same model for fake e and µ Normalisation from fit of MET distribution before cut

L. Masetti - TOP2011 workshop 14 S

Mass reconstruction

Neutrino

MET identified with neutrino pT

p_z from quadratic equation imposing W mass If no real solution, MET corrected to get null discriminant If two real solutions, smallest |pz| chosen

No assignment of jets to top or antitop

3 or 4 hardest jets added to leptonic W Jets compatible with ISR excluded (far from other objects)

Matched jets

