

2263-28

Beyond the Standard Model: Results with the 7 TeV LHC Collision Data

19 - 23 September 2011

Searches for Supersymmetry with the ATLAS Detector

Antonella De Santo U. Sussex United Kingdom

Antonella De Santo

University of Sussex

On behalf of the ATLAS Collaboration

BSMLHC 2011 - ICTP, Trieste, Italy

Introduction to SUSY

The LHC and ATLAS

Overview of R-parity conserving SUSY searches

(a.k.a. E_T^{miss} signals)

signals with lepton veto leptonic signals b-jet signals di-photon signals

Summary of other searches

including R-parity violating signals

Conclusions

+ The (Very Resilient) Standard Model

Matter (Fermions)

3 quark generations 3 lepton generations

Forces (Bosons)

 $\begin{array}{l} EWK-\gamma, Z, W^{\pm}\\ Strong-gluons \end{array}$

Higgs boson (still elusive)

2

+ Some Outstanding Issues

+ Supersymmetry (SUSY)

New symmetry between bosons and fermions

Every SM particle has a supersymmetric partner with Δ (spin)=1/2 Extended Higgs sector: h, H, A, H[±]

Natural solution to hierarchy problemGauExact cancellation of loop contributionsPoss

Dark Matter candidate If R-parity is conserved, stable LSP (More on R-parity later)

Gauge unification Possible in SUSY theories

SUSY is a broken symmetry No superpartners observed with same mass but different spin

The minimal SUSY extension of the SM (MSSM) has got 105+19 free parameters

Unmanageable!

Top-down approach

Models of SUSY breaking - cMSSM/mSUGRA, GMSB, etc

Fix a limited number of parameters at some higher energy scale, then extrapolate back to to the EWK scale & predict phenomenology

Search for a wide range of signatures – if null result, set limits in parameter space

Bottom-up approach

Phenomenological Models – Assume some sparticle mass hierarchy

Simplified Models – Consider individual decays as separate building blocks

Model-independent limits on "effective cross-section"

 $\sigma \times \varepsilon \times A$

(A=acceptance, ε =efficiency)

(ie a limit on the number of events in the signal region – for a given luminosity)

+ Search Strategy

At the LHC, SUSY cross-sections dominated by production of coloured sparticles (squarks and gluinos)

R-parity Conserving (RPC) Models

Sparticles produced in pairs

Decay chains (\rightarrow jets, leptons, ...) terminating with a stable and neutral LSP (neutralino or

LSP leaves the detector unseen \rightarrow Missing transverse energy (E_T^{miss})

No mass peaks, signal in tails

R-parity Violating (RPV) Models

Other Scenarios

Displaced vertices Slow highly hadronising particles

(see eg P. Mermod's talk)

+ The Large Hadron Collider

7 TeV pp collisions

2010 – gradual ramp-up of instantaneous luminosity 2011 – sustained delivery of integrated luminosity

Status

Peak luminosity – 3.3×10^{33} cm⁻² s⁻¹

Z

Multi-purpose detector

Large acceptance (~4 π coverage) and hermeticity

Excellent particle identification and reconstruction

Excellent E_T^{miss} and jet reconstruction

Excellent vertex reconstruction

Toroid Magnets Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker

Inner Detector ($|\eta|$ <2.5,**B=2T)** Si pixels and strips, TRT straws Tracking and vertexing, e/π separation $\sigma_{p_T}/p_T \sim 3.8 \times 10^{-4} p_T (GeV) \oplus 0.015$

EM Calorimeter ($|\eta|$ < 4.9)

Pb-Lar Accordion e/ γ trigger, id and measurement $\sigma_E/E \sim 10\%/\sqrt{E(GeV)}$

Hadron Calorimeter ($|\eta| < 4.9$) Fe-scintillator tiles (barrel) $\sigma_E / E \sim 50\% / \sqrt{E(GeV)} \oplus 0.03$ Cu/W-Lar (endcap) $\sigma_E / E \sim 90\% / \sqrt{E(GeV)} \oplus 0.07$ Trigger and measurement of jets and E_T^{miss}

Muon Spectrometer ($|\eta|$ < 2.7)

Air-core toroids with gas-based muon chambers

Muon trigger and measurement p_T resolution <10% up to ~1TeV

+ A Collaborative Effort

+ SUSY Searches at ATLAS

ATLAS SUSY Analysis	Publications
E_{T}^{miss} + jets + 0-lep	arXiv:1102.5290 (35 pb ⁻¹) [PLB]; ATL-CONF-2011-086 (163 pb ⁻¹); preliminary (1.04 fb ⁻¹)
E_{T}^{miss} + multi-jets + 0-lep	Preliminary (1.34fb ⁻¹)
E_{T}^{miss} + jets + 1-lep	arXiv:1102.2357 (35 pb ⁻¹) [PRL]; ATL-CONF-2011-906 (163 pb ⁻¹); preliminary (1.04 fb ⁻¹)
E_{T}^{miss} + b-jets + 0/1-lep	arXiv:1103.4344 (35 pb ⁻¹) [PLB]; ATL-CONF-2011-098 (0.83 fb ⁻¹); ATL-CONF-2011-130 (1.03 fb ⁻¹)
E_{T}^{miss} + jets + 2-lep (SS, OS, SF sub.)	arXiv:1103.6214 (35 pb ⁻¹) [EPJC]; arXiv:1103.6208 (35 pb ⁻¹) [EPJC]; ATL-CONF-2011-091; preliminary (1.04 fb ⁻¹)
E_{T}^{miss} + jets + >=3-lep	ATL-CONF-2011-039 (34 pb ⁻¹)
$E_{T}^{miss} + 2\gamma$	arXiv:1107.0561 (35 pb ⁻¹) [EPJCL]; preliminary (1.04 fb ⁻¹)
Coloured scalars	Preliminary (34 pb ⁻¹)
eμ resonance (RPV)	arXiV:1103.5559 (35 pb ⁻¹) [PRL]; ATL-CONF-2011-109 (0.87 fb ⁻¹); ArXiV:1109.3089 (1.07 fb ⁻¹)
Stable hadronising squarks and gluinos	arXiV:1103.1984 (34 pb ⁻¹) [PLB]
Heavy long-lived charged particles	arXiV:1106.4495 (34 pb ⁻¹) [PLB]
Heavy medium-lived particles	Preliminary (33 pb ⁻¹)

+ SUSY Searches at ATLAS

ATLAS SUSY Analysis	Publications
E_{T}^{miss} + jets + 0-lep	arXiv:1102.5290 (35 pb ⁻¹) [PLB]; ATL-CONF-2011-086 (163 pb ⁻¹); preliminary (1.04 fb ⁻¹)
E_{T}^{miss} + multi-jets + 0-lep	Preliminary (1.34fb ⁻¹)
E_{T}^{miss} + jets + 1-lep	arXiv:1102.2357 (35 pb ⁻¹) [PRL]; ATL-CONF-2011-906 (163 pb ⁻¹); preliminary (1.04 fb ⁻¹)
E_{T}^{miss} + b-jets + 0/1-lep	arXiv:1103.4344 (35 pb ⁻¹) [PLB]; ATL-CONF-2011-098 (0.83 fb ⁻¹); ATL-CONF-2011-130 (1.03 fb ⁻¹)
E_{T}^{miss} + jets + 2-lep (SS, OS, SF sub.)	arXiv:1103.6214 (35 pb ⁻¹) [EPJC]; arXiv:1103.6208 (35 pb ⁻¹) [EPJC]; ATL-CONF-2011-091; preliminary (1.04 fb ⁻¹)
E_{T}^{miss} + jets + >=3-lep	ATL-CONF-2011-039 (34 pb ⁻¹)
$E_T^{miss} + 2\gamma$	arXiv:1107.0561 (35 pb ⁻¹) [EPJCL]; preliminary (1.04 fb ⁻¹)
Coloured scalars	Preliminary (34 pb ⁻¹)
eμ resonance (RPV)	arXiV:1103.5559 (35 pb ⁻¹) [PRL]; ATL-CONF-2011-109 (0.87 fb ⁻¹); ArXiV:1109.3089 (1.07 fb ⁻¹)
Stable hadronising squarks and gluinos	arXiV:1103.1984 (34 pb ⁻¹) [PLB]
Heavy long-lived charged particles	arXiV:1106.4495 (34 pb ⁻¹) [PLB]
Heavy medium-lived particles	Preliminary (33 pb ⁻¹)

Other signatures

Signals with E_T^{miss}

A De Santo, SUSY at ATLAS, BSMLHC 2011

♣

+ RPC Signals with E_T^{miss}

Broad searches

To cover as many signatures as possible from a broad range of scenarios

short / long cascades

high-pT jets (including b-jets)

possibly (multi-)leptons (of different flavours)

possibly photons

moderate-to-large E_T^{miss}

Understanding of SM backgrounds crucial

QCD, W/Z+jets, ttbar, ...

From (or verified in) control regions

0-lepton + jets + E_T^{miss}

A De Santo, SUSY at ATLAS, BSMLHC 2011

♣

+ 0-lepton + jets +
$$E_T^{miss}$$
 – Strategy

Squarks and/or gluinos are produced in pairs

 $\tilde{g}\tilde{g},\,\tilde{q}\tilde{g},\,\tilde{q}\tilde{q}$

Dominant mechanism depends on mass hierarchy

Typically

$$\tilde{g} \rightarrow q \overline{q} \tilde{\chi}_1^0$$
 (2 jets)
 $\tilde{q} \rightarrow q \tilde{\chi}_1^0$ (1 jet)

Signal regions optimised to maximise sensitivity to different production mechanisms

$$m_{eff} = \sum_{i=1}^{n} p_T^{jet,i} + E_t^{miss}$$

n= all signal jets (High mass: all jets with p_T >40 GeV)

anti-QCD cuts

Select events with 2-4 jets and large E_t^{miss}
Veto events with isolated e or μ of $p_T > 20$ GeV

Signal Region	≥ 2 jets	\geq 3 jets	\geq 4 jets	High mass
$E_{ m T}^{ m miss}$	> 130	> 130	> 130	> 130
Leading jet $p_{\rm T}$	> 130	> 130	> 130	> 130
Second jet $p_{\rm T}$	> 40	> 40	> 40	> 80
Third jet $p_{\rm T}$	_	> 40	> 40	> 80
Fourth jet $p_{\rm T}$	_	_	> 40	> 80
$\Delta \phi$ (jet, $E_{\rm T}^{\rm miss}$) _{min}	> 0.4	> 0.4	> 0.4	> 0.4
$E_{\mathrm{T}}^{\mathrm{miss}}/m_{\mathrm{eff}}$	> 0.3	> 0.25	> 0.25	> 0.2
$m_{\rm eff}$ [GeV]	> 1000	> 1000	> 500/1000	> 1100

small/large mass splittings

+ 0-lepton + jets + E_T^{miss} – Background Estimation

Background Sources		
W+jets	W→ $\tau\nu$ (had τ), W-→ $e\nu$, $\mu\nu$ (e, μ not seen)	
Z+jets	$Z \rightarrow vv$ (irreducible)	
ttbar, single top	Hadronic top decays	
QCD	Misreconstruction of jets, v from heavy flavour	

Five **control regions** (**CR**) are defined for each of the five signal regions (SR) – 25 CRs in total

Background estimation performed by means of a combined likelihood fit to all CRs

DATA / MC

Contributions from all CRs to each SR (and to the CRs themselves) and their correlations are all taken into account simultaneously

Transfer Factors (TF) relate CR measurement to SR background estimate

$$N(SR,est,proc) = N(CR,obs,proc) * \left[\frac{N(SR,raw,proc)}{N(CR,raw,proc)}\right]$$

TFs computed using a mix of data-driven and MC based techniques

b-jet tag

+ 0-lepton + jets + E_T^{miss} – Results

1.04 fb⁻¹

Observations agree with SM expectations in all SRs

Result are interpreted as a 95% CL exclusion limit on the effective cross section $\sigma \times \epsilon \times A$

Process	Signal Region				
	\geq 2-jet \geq 3-jet \geq 4-jet, \geq 4-jet,			\geq 4-jet,	High mass
			$m_{\rm eff} > 500 { m GeV}$	$m_{\rm eff} > 1000 { m ~GeV}$	
Excluded $\sigma \times \operatorname{Acc} \times \epsilon$ (fb)	24	30	477	32	17

+ 0-lepton Analysis – Interpretation

Phenomenological MSSM

LSP mass = 0

(results ~unchanged for LSP mass up to 200 GeV)

gluino and $(1^{st} and 2^{nd} generation)$ squark mass varied from 100 GeV to 2 TeV

all other masses at 5 TeV

mSUGRA/CMSSM

 $(A_0=0, \tan\beta=10, \mu>0)$

Huge improvement on 2010 result

Limit at large m_0 benefits from the introduction of SRs with larger jet multiplicities

~450 GeV are excluded

$0-lepton + Multi-jet + E_T^{miss}$

A De Santo, SUSY at ATLAS, BSMLHC 2011

♣

+ 0-lepton + Multi-jets + E_t^{miss} – Strategy

 $E_{\rm T}^{\rm miss}$ resolution dominated by stochastic fluctuations

$$\sigma^2(E_T^{miss}) \sim H_T \equiv \sum_{jets} p_T$$

(sum over jets with: p_T >40 GeV, $|\eta|$ <2.8)

Extension of (2-4)-jet analysis

Provides increased sensitivity to models with many-body decays or sequential cascade decays to coloured particles

such as SUSY models with TeV-scale gluinos and heavy squarks

eg high-m0 mSUGRA/CMSSM

Signal regions with (≥ 6 , ≥ 7 , ≥ 8) high-p_T jets, plus E_T^{miss} and lepton veto

jet multiplicities and pT thresholds chosen to guarantee high trigger efficiencies and good signal acceptance

Data-driven approach

Cannot expect a good modelling of QCD from MC predictions only

 $E_T^{miss}/\sqrt{H_T}$ variable (nearly independent of jet multiplicity and pileup) used to remove MC dependence (transfer factors from lower jet multiplicities)

+ 0-lepton + Multi-jets + E_t^{miss} – Results

Background Sources			
Vlulti-jet QCD + Fully hadronic ttbar	Dominant		
Semi- and fully eptonic ttbar	Significant		
N/Z+jets	Small		

mSUGRA/CMSSM ($A_0=0, \tan\beta=10, \mu>0$)

21

MSUGRA/CMSSM: $tan\beta = 10, A_a = 0, \mu > 0$ = 1.34 fb⁻¹ D 550 B 550 B 550 Multijets plus E^{Miss} Com B 500 CLs 95% C.L. limit ----- exp. CLs 95% C.L. limit Multijets plus E_Miss Combined exp. CLs 68% C.L. limit exp. CLs 99% C.L. limit ----- 2010 data PCL 95% C.L. limit 0 (1400) LEP $2\tilde{\chi}^{\pm}$ 450 D0 \tilde{q} , \tilde{q} , tan β =3, μ <0, 2.1 fb⁻ CDF $\tilde{g}, \tilde{q}, \tan\beta=5, \mu<0, 2 \text{ fb}^{-1}$ 400 ğ (1000) Theoretically excluded 350 300 1.34 fb⁻¹ ğ (800) 9(600) 250 200 ã (600) (0-lep 2010)-(multi-jet) 150 500 2000 2500 3000 3500 1000 1500 m₀ [GeV]

+ 0-lepton + Multi-jets + E_t^{miss} – Results

Background Sources				
Multi-jet QCD + Fully hadronic ttbar	Dominant			
Semi- and fully leptonic ttbar	Significant			
W/Z+jets	Small			

mSUGRA/CMSSM

22

$1-lepton + jets + E_T^{miss}$

A De Santo, SUSY at ATLAS, BSMLHC 2011

╋

+ 1-lepton + jets + E_{t}^{miss} – Strategy

Presence of lepton provides extra advantages compared to purely hadronic searches

Triggering

efficient single lepton triggers

Background suppression

QCD background greatly reduced by lepton requirement

Background modelling

using data-driven techniques

Additional variables used in the event selection:

$$m_{T} = \sqrt{2 \cdot p_{T}^{\ell} \cdot E_{T}^{miss} \left(1 - \cos\left(\Delta \phi(\vec{\ell}, \vec{E}_{T}^{miss})\right)\right)}$$

$$m_{eff} = p_{T}^{\ell} + \sum_{i=1}^{3(4)} p_{T}^{jet(i)} + E_{T}^{miss}$$
De Santo, SUSY at ATLAS, BSMLHC 2011

Transverse mass between selected lepton and ${E_{\rm T}}^{\rm miss}\, vector$

Effective mass (using leading 3 (4) jets)

+ 1-lepton + jets + E_{t}^{miss}

Four Signal Regions

1 lepton

 $p_T(e)$ >25 GeV, $p_T(\mu)$ >20 GeV different thresholds due to trigger

No extra leptons

Veto e/μ with $p_T(e) > 20$ GeV, $p_T(\mu) > 10$ GeV

At least 3 or 4 jets with p_T above threshold "loose" (L) or "tight" (T) jets

Jets not aligned with E_t^{miss} vector $\Delta \Phi(\text{jet}, E_T^{miss}) > 0.2$, all 3 (4) jets

m_T>100 GeV suppress W+jets

Cuts on E_T^{miss} , E_t^{miss}/m_{eff} , m_{eff} for further signal enrichment

	Signal Regions				Control Regions	
Selection	3JL	3JT	4JL	4JT	3J	4J
Number of Leptons			=	1		
Lepton $p_{\rm T}$ (GeV)		> 25(20) for el	ectrons (n	nuons)	
Veto lepton $p_{\rm T}$ (GeV)		> 20(10) for el	ectrons (n	nuons)	
Number of jets	≥	3	≥	4	≥ 3	≥ 4
Leading jet $p_{\rm T}$ (GeV)	60	80	60	60	60	60
Subsequent jets p_T (GeV)	25	25	25	40	25	25
$\Delta \phi(j \vec{et}_i, \vec{E}_T^{miss})$		[> 0.2	$(\text{mod}.\pi)$]	for all 3	(4) jets	
$m_{\rm T}~({\rm GeV})$	> 100 $40 < m_{\rm T} < 80$				$n_{\rm T} < 80$	
$E_{\rm T}^{\rm miss}~({ m GeV})$	> 125 > 240 > 140 > 200 $30 < E_{\rm T}^{\rm miss} <$				$\frac{\text{miss}}{\Gamma} < 80$	
$E_{\rm T}^{\rm miss}/m_{\rm eff}$	> 0.25	> 0.15	> 0.30	> 0.15	_	_
m _{eff} (GeV)	> 500	> 600	> 300	> 500	> 500	> 300

QCD background using "loose-tight" Matrix Method

use data with "loose" lepton to estimate data with "tight" lepton

Non-QCD background dominated by top and W+jets

do MC-data normalisation in CRs extrapolate to SR relying on MC shapes perform simultaneous likelihood fit of different CRs

+ $1-lepton + jets + E_t^{miss} - Results$

Observed number of events in data consistent with SM

uncertainties dominated by jet energy scale and resolution, theory, MC modeling and statistics

Interpretation in mSUGRA/MSSM, bilinear RPV, simplified models (next page)

+ 1-lepton + jets + E^{miss} – Simplified Models

95% CL upper limit on visible cross-section for new physics, as a function of $x = (m_{\tilde{\chi}^{\pm}} - m_{\tilde{\chi}^{0}})/(m_{\tilde{g}(\tilde{q})} - m_{\tilde{\chi}^{0}})$ for the gluino (squark) model

Ч

Ы

A De Santo, SUSY at ATLAS, BSMLHC 2011

Identical cross-sections assumed for the electron and muon channels

Colour coding \rightarrow Model-independent cross-section limit

Exclusion lines \rightarrow Production crosssections as calculated with PROSPINO for MSSM

Assuming 100% branching fractions to the assumed decay modes

Gluino model has better sensitivity, including for small x values, due to the inclusion of a 4-jet SR

1.04 fb⁻¹

b-jets + 0/1-lep + E_T^{miss}

A De Santo, SUSY at ATLAS, BSMLHC 2011

╋

+ SUSY Searches with b-jets

Mixing effects for squarks are proportional to the mass of the fermion partners and become important for 3rd generation squarks

$$m^{2}(\tilde{t}_{1,2}) = \frac{1}{2} \Big[m^{2}(\tilde{t}_{R}) + m^{2}(\tilde{t}_{L}) \Big] \mp \frac{1}{2} \sqrt{\Big[m^{2}(\tilde{t}_{R}) + m^{2}(\tilde{t}_{L}) \Big]^{2} + 4m^{2}(t) \Big[A_{t} - \mu \tan \beta \Big]^{2}}$$

Large mixing can yield light sbottom (\widetilde{b}_1) and stop (\widetilde{t}_1) squarks

possibly large production cross-sections for sbottom and stop at the LHC

light stop also motivated by naturalness (stop mass <~500 GeV to avoid fine tuning)

Final states with b-jets, 0/1-leptons, light jets and E_T^{miss}

+ $b-jets + 0-lepton + E_T^{miss} - Results$

Good agreement between data and MC before final cut on $m_{\rm eff}$

Four Signal Regions

(best selection chosen for each signal point)

Signal Region	# b-jets	m _{eff} cut (GeV)
3JA	≥1	500
ЗЈВ	≥1	700
зјС	≥2	500
3JD	≥2	700

Lepton veto

Veto e/μ with $p_T(e) > 20$ GeV, $p_T(\mu) > 10$ GeV

At least 3 jets with $p_T > 130, 50, 50 \text{ GeV}$ $E_T^{\text{miss}} > 130 \text{ GeV}$ jet and E_T^{miss} cuts dictated by trigger

Jets not aligned with E_t^{miss} vector

 $\Delta \Phi_{\min}(\text{jet}, E_T^{\text{miss}}) > 0.4$

 $E_t^{miss}/m_{eff} > 0.25$ for further signal enrichment

A De Santo, SUSY at ATLAS, BSMLHC 2011

masses of 200-660 GeV (for m_gluino-m_neutralino)>100 GeV)

+ b-jets + 1-lepton + E_T^{miss} – Results

Backgrounds –

QCD – Data-driven Non-QCD – normalisation from low-mT using MC-based transfer functions

SM (expected): 54.9 ±13.6 Data (seen) : 74

Selection similar to 1-lep+jets+E^{,miss}, with b-jets

Exactly 1 lepton

Veto e/μ with $p_T(e)>25$ GeV, $p_T(\mu)>20$ GeV Track isolation applied to leptons

>=4 jets with $p_T > 50 \text{ GeV}$

>=1 b-jets

 $E_T^{miss} > 80GeV$

 $m_T^{>}100 \text{ GeV}$

 m_{eff} > 600 GeV

 $(1.2 \sigma upward fluctuation)$

Searching for:

1.03 fb⁻¹

32

$$\begin{split} \tilde{g} &\to \tilde{t}t \quad , \quad \text{with}: \\ \tilde{t} \to b \tilde{\chi}_1^{\pm} \\ \tilde{t} \to t \tilde{\chi}_1^0 \\ \tilde{g} \to t \bar{t} \tilde{\chi}_1^0 \end{split}$$

>= 2-leptons + E_T^{miss}

A De Santo, SUSY at ATLAS, BSMLHC 2011

╋

+ "Multilepton" + E_{T}^{miss} Signatures $ilde{\chi}_1^{\mathrm{o}}$ ± $ilde{\chi}^0_2$ \tilde{q} 1± q

"Lepton" = e, μ

35

Different combinations of decay modes (a)-(d) on the two legs can give rise to >=2-lepton signatures in the final state:

eq: (a) or (b) on either leg \rightarrow Same-Sign (SS) 2-lep (c) or (d) on single leg \rightarrow **Opposite-Sign (OS) or SS 2-lep**

$$(a) \quad \tilde{\chi}_{i}^{0} \rightarrow l^{\pm} \nu \tilde{\chi}_{i}^{\mp}$$

$$(b) \quad \tilde{\chi}_{i}^{\pm} \rightarrow l^{\pm} \nu \tilde{\chi}_{j}^{0}$$

$$(c) \quad \tilde{\chi}_{i}^{0} \rightarrow l^{\pm} l^{\mp} \tilde{\chi}_{j}^{0}$$

$$(d) \quad \tilde{\chi}_{i}^{\pm} \rightarrow l^{\pm} l^{\mp} \tilde{\chi}_{j}^{\pm}$$

If production of leptons is correlated \rightarrow Same-Flavour Opposite-Sign (SFOS) 2-lep (dilepton mass endpoint \rightarrow SUSY masses)

Other combinations can also give rise to **>=3-lep**

Background composition different for different flavour and sign combinations

+ SS 2-leptons (+ Jets) + E_T^{miss}

Events / 20 GeV

10⁴

 10^{3}

10²

10-1

Data/MC

L dt ~ 1.04 fb⁻¹ di-lep<mark>r</mark>on [SS]

Exactly 2 leptons

 $p_{T}(e) > 20 \text{ GeV}$ (25 GeV if leading) $p_{T}(\mu) > 10 \text{ GeV} (20 \text{ GeV if leading})$ $m_u > 12 \text{ GeV}$

Main backgrounds: fake leptons

dominant, estimate using "matrix method"

charge misidentification dibosons

Two control regions

ATLAS Preliminary

Data 2011 (Ns = 7 TeV)

250

- SM Background

Fake Leptons

Z+jets

Drell-Yan

Diboson

SR	E _t ^{miss} cut (GeV)	Leading jets p _T cut (GeV)
SS-SR1	100	
SS-SR2	80	50, 50

1.04 fb⁻¹

SR	Background	Data	σ×ε×Α (95% CL)
SS-SR1	$32.6 \pm 4.4 \pm 4.4$	25	10.2 fb
SS-SR2	$24.9 \pm 4.1 \pm 6.6$	28	20.3 fb

Good agreement with SM expectations

Result interpreted as a limit on the effective cross-section $\sigma \times \epsilon \times A$

+ OS 2-leptons (+ Jets) + E_T^{miss}

Exactly 2 leptons

$$\begin{split} p_{T}(e) &> 20 \text{ GeV} \ (25 \text{ GeV} \text{ if leading}) \\ p_{T}(\mu) &> 10 \text{ GeV} \ (20 \text{ GeV} \text{ if leading}) \\ m_{11} &> 12 \text{ GeV} \end{split}$$

Backgrounds -

fully leptonic ttbar (dominant), Z+jets (sub-dominant)

normalise data to MC using suitable control regions

dibosons, single top

event yields from MC

fake leptons

"matrix method"

Three control regions

SR	E _T ^{miss} cut (GeV)	Leading jets p _T cut (GeV)
OS-SR1	250	
OS-SR2	220	80, 40, 40
OS-SR3	100	100, 70, 70, 70

Good agreement with SM expectations

Result interpreted as a limit on the effective crosssection $\sigma \times \epsilon \times A$ (CLs prescription)

1.04 fb⁻¹

SR	Background	Data	σ×ε×Α (95% CL)
OS-SR1	$15.5 \pm 1.2 \pm 4.4$	13	9.5 fb
OS-SR2	$13.0 \pm 1.8 \pm 4.1$	17	15.2 fb
OS-SR3	5.7±1.1±3.5	8	5.0 fb

+ OS "Flavour Subtraction" 2-leptons

Search for excess of SFOS 2-leptons over Different-Flavour (DF) OS 2-leptons

In the presence of SUSY, measure sparticle masses via edges in flavour-subtracted m_{11} (2-lep invariant mass) distribution

1.04 fb⁻¹

38

Define quantity S to quantify the excess of SF vs DF 2-leptons

Events / 20 GeV

$S = N(e^{\pm}e^{\mp})$	$N(e^{\pm}\mu^{\mp})$	$\beta N(\mu^{\pm}\mu^{\mp})$
$S = \frac{1}{\beta \left(1 - \left(1 - \tau_{e}\right)^{2}\right)}$	$-\frac{1-(1-\tau_{e})(1-\tau_{\mu})}{1-(1-\tau_{\mu})}$	$1 - (1 - \tau_{\mu})^2$

 β = ratio of e/ μ efficiencies $\tau_{e,\mu}$ = e/ μ trigger efficiency

SR	E _t ^{miss} cut (GeV)	# Jets	m ₁₁ veto (GeV)
FS-SR1	80	2	
FS-SR2	80		80-100
FS-SR3	250		

	\mathcal{S}_{obs}	$ar{\mathcal{S}}_b$	RMS	/MC SF
FS-SR1	$131.6 \pm 0.6 (\mathrm{sys})$	$126.5{\pm}23.5{\pm}17.2$	49.9	Data
FS-SR2	$142.2 \pm 0.6 (sys)$	$70.0{\pm}23.2{\pm}16.8$	49.1	
FS-SR3	$-3.1\pm0.0(03)(sys)$	$0.4{\pm}1.2{\pm}1.2$	4.6	

No deviations from SM observed of SF vs DF, in all signal regions

Background-only hypothesis for S (S_b) calculated using pseudo-experiments

+ 2010 Searches with >=2 Leptons

Summary of 2010 2-leptons (SS and OS), mSUGRA/CMSSM

Signal regions: E_T^{miss} >150 (100) GeV for OS (SS)

95% CL limits on effective cross-section $\sigma \times \epsilon \times A$:

OS – ee: 0.09 pb; eμ: 0.22 pb; μμ: 0.21 pb SS – 0.07 pb

"Multilepton" 2010 SR –

$$\begin{split} &\geq 3 \text{ leptons} \\ &p_T(\text{lep1},2,3) > 20, 20, 20 \ (10) \text{ GeV for e } (\mu) \\ &M_{11} > 20 \text{ GeV and Z-mass veto} \\ &\geq 2 \text{ jets with } p_T > 50 \text{ GeV} \\ &E_T^{\text{miss}} > 50 \text{ GeV} \end{split}$$

Backgrounds is virtually all ttbar Expect $0.109 \pm 0.023^{+0.036}_{-0.025}$ No event survives the selection Limit on $\sigma \times \epsilon \times A$: 62 pb

35 pb⁻¹

+ $2 \gamma + E_T^{miss}$ – Motivations

Gauge Mediated SUSY Breaking (GMSB)

gravitino $ilde{G}$ is LSP NLSP (often $ilde{\chi}_1^0$) dictates phenomenology

di-photon + E_T^{miss} signature from NLSP decays:

$\tilde{\chi}_{1}^{0} \rightarrow \tilde{G} \gamma \rightarrow \gamma + E_{T}^{miss}$ (×2) $\implies 2\gamma + E_{T}^{miss}$

Minimal Gauge Mediation (MGM)

one mass scale Λ for the symmetry breaking and messengers of mass $M_{\rm mess}$ gluino much heavier than neutralinos

e.g. **SPS8** – assumes unification of gaugino masses at GUT scale (gaugino pair production dominant)

General Gauge Mediation (GGM)

no hierarchy assumed for gluino/squark and gaugino masses

UED models can also give $2\gamma + E_T^{miss}$ signatures

No significant deviation Expected : 4.1 ± 0.6 (stat) ±1.4 (syst) from SM expectations

A De Santo, SUSY at ATLAS, BSMLHC 2011

Observed: 5

Other SUSY Searches

A De Santo, SUSY at ATLAS, BSMLHC 2011

♣

+ Massive Coloured Scalar

Search for pair-produced scalar particles, each decaying to 2 jets

Motivated for example by SUSY models with an extended QCD sector (sgluon)

Signature: 4 jets (2 jet-jet resonances) and no E_T^{miss}

Probe sgluon mass >100 GeV

Pair jet pairs based on proximity of jets (ΔR_{jj})

Require consistency of M_{ij} values from both jet pairs in event ($\Delta M_{ij}/(M_{ij,1}+M_{ij,2}) < 7.5\%$)

Select central signal (scattering angle of candidate spluons in 4-jet rest frame $|\cos\theta^*| < 0.5$)

Result based on 2010 data due to availability of low- p_T 4-jet trigger

+ RPV Scalar Tau Neutrino

10-2

10

200

 $\begin{array}{c}
 d \\
 \lambda'_{311} \\
 \overline{d} \\
 \end{array}$ $\begin{array}{c}
 \tilde{\nu}_{\tau} \\
 \tilde{\nu}_{\tau} \\
 \lambda_{312} \\
 \mu^{+} \\
 \end{array}$ $\begin{array}{c}
 46 \\
 \lambda_{312} \\
 \mu^{+} \\
 \end{array}$

Search for an excess at high values of the opposite-charge $e\mu$ invariant mass spectrum

Signal possibly originating from resonant decays of neutral sparticles in RPV SUSY

1.07 fb⁻¹

Null result translates into limit on σ × BR and on the coupling constants as a function of the mass of the scalar neutrino

400

600

800

1000

= 0.07 (ATLAS 2011 data) = 0.05 (ATLAS 2011 data)

= 0.01 (ATLAS 2011 data) = 0.07 (ATLAS 2010 data)

> [∞] 1400 m_v [GeV]

0.07 (D0@Tevatron)

1200

Search for heavy medium-lived particles in the inner detector Signature: displaced vertex + high-pT muon

Crucial to have a very good understanding of tracking and of the spatial distribution of passive material

See Philippe Mermod's talk also for more results on long-lived particles

60

80

40

100

120 140 160 180

Vertex r_{DV} [mm]

10⁻¹ 🛄

20

Summary and Conclusions

A De Santo, SUSY at ATLAS, BSMLHC 2011

╋

+ Summary of SUSY Searches at ATLAS

*Only a selection of the available results leading to mass limits shown

Sadly, no SUSY just yet ⊗

Sadly, no SUSY just yet ⊗

It was not around the corner!!

Sadly, no SUSY just yet ⊗

It was not around the corner

But a lot more results still to come...

Sadly, no SUSY just yet 😕

It was not around the corner

But a lot more data still to come... ... and plenty of data too!

Stay Tuned!

+ Can't We See the Wood for the Trees ??

Backup Slides

╋

+ 0-lepton Analysis – Results

Process	Signal Region						
1100033	> 2_iet	> 2-jet > 3-jet		≥ 4-jet,	High mass		
	≥ 2-j01	2 5-300	$m_{\rm eff} > 500~{ m GeV}$	$m_{\rm eff} > 1000~{ m GeV}$	ingii illass		
Z/γ +jets	$32.5 \pm 2.6 \pm 6.8$	$25.8 \pm 2.6 \pm 4.9$	$208 \pm 9 \pm 37$	$16.2 \pm 2.1 \pm 3.6$	$3.3 \pm 1.0 \pm 1.3$		
W+jets	$26.2 \pm 3.9 \pm 6.7$	$22.7 \pm 3.5 \pm 5.8$	$367\pm30\pm126$	$12.7 \pm 2.1 \pm 4.7$	$2.2\pm0.9\pm1.2$		
$t\bar{t}$ + Single Top	$3.4\pm1.5\pm1.6$	$5.6\pm2.0\pm2.2$	$375\pm37\pm74$	$3.7\pm1.2\pm2.0$	$5.6 \pm 1.7 \pm 2.1$		
QCD jets	$0.22 \pm 0.06 \pm 0.24$	$0.92 \pm 0.12 \pm 0.46$	$34 \pm 2 \pm 29$	$0.74 \pm 0.14 \pm 0.51$	$2.10 \pm 0.37 \pm 0.83$		
Total	$62.3 \pm 4.3 \pm 9.2$	$55\pm3.8\pm7.3$	$984 \pm 39 \pm 145$	$33.4\pm2.9\pm6.3$	$13.2\pm1.9\pm2.6$		
Data	58	59	1118	40	18		

Backgrounds partially correlated → uncertainties on total background estimates not quadrature sum of individual components

Process	Signal Region						
	\geq 2-jet	High mass					
			$m_{\rm eff} > 500 { m ~GeV}$	$m_{\rm eff} > 1000 { m ~GeV}$			
Excluded $\sigma \times \operatorname{Acc} \times \epsilon$ (fb)	24	30	477	32	17		

Result are interpreted as a 95% CL exclusion limit on the effective cross section $\sigma\times\epsilon\times A$

(profile likelihood ratio approach, CLs prescriptions)

+ $b-jets + 0-lepton + E_T^{miss} - Interpretation$

Interpretation in terms of SO(10) GUTs

gluino mass ~300-600 GeV chargino mass 100-180 GeV LSP neutralino mass 50-90 GeV, m(chi20)~2m(chi10) 1st/2nd generation scalars: m~10 TeV 3rd generation squarks: m~1-3 TeV gluino→bbar chi10 or gluino→bbbar chi20

0.83 fb⁻¹

57

Two specific models – D-term splitting model (DR3) and Higgs splitting model (HS)

+ 2-lepton SS analysis

Same Sign [SS-SR1]	$e^{\pm}e^{\pm}$	$e^{\pm}\mu^{\pm}$	$\mu^{\pm}\mu^{\pm}$
Fake	$3.5 \pm 0.7 \pm 2.0$	$14.4 \pm 3.2 \pm 0.6$	$9.2 \pm 4.0 \pm 1.8$
Charge flip	$0.73 \pm 0.05 \pm 0.06$	$1.10{\pm}0.07 \pm 0.08$	neg.
Dibosons	$0.79 {\pm} 0.27 {\pm} 0.05$	$1.7{\pm}0.4{\pm}0.3$	$1.1 \pm 0.2 \pm 0.1$
Standard Model	$5.0 \pm 0.8 \pm 2.0$	$17.2 \pm 3.2 \pm 0.6$	$10.3 \pm 3.0 \pm 1.8$
Cosmics	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$
Observed	6	14	5
Same Sign [SS-SR2]	$e^\pm e^\pm$	$e^{\pm}\mu^{\pm}$	$\mu^\pm\mu^\pm$
Fake	$1.5{\pm}0.5{\pm}2.0$	$13.4{\pm}3.2{\pm}2.7$	$6.7{\pm}2.5{\pm}1.3$
Charge flip	$0.59{\pm}0.04{\pm}0.04$	$1.36 {\pm} 0.05 {\pm} 0.06$	neg
Dibosons	$0.25{\pm}0.06{\pm}0.13$	$0.9{\pm}0.2{\pm}0.2$	$0.64{\pm}0.05{\pm}0.02$
Standard Model	$2.4{\pm}0.5{\pm}2.0$	$15.6 {\pm} 3.2 {\pm} 2.7$	$6.9{\pm}2.5{\pm}1.5$
Cosmics	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-1}$
Observed	4	14	1

For 2010 Results, see: EPJC 71 (2011) 1682 58

1.04 fb⁻¹

Signal Region	OS-SR1	OS-SR2	OS-SR3	SS-SR1	SS-SR2	FS-SR1	FS-SR2	FS-SR3
$E_{\mathrm{T}}^{\mathrm{miss}} \; \mathrm{[GeV]}$	250	220	100	100	80	80	80	250
Leading jet $p_{\rm T}$ [GeV]	-	80	100	-	50	-	-	-
Second jet $p_{\rm T}$ [GeV]	-	40	70	-	<mark>5</mark> 0	-	-	-
Third jet $p_{\rm T}$ [GeV]	-	40	70	-	-	-	-	-
Fourth jet $p_{\rm T}$ [GeV]	-	-	70	-	-	-	-	-
Number of jets	-	-	-	-	-	-	≥ 2	-
m_{ll} veto [GeV]	-	-	-	-	-	80-100	-	-

59

1.04 fb⁻¹

A De Santo, SUSY at ATLAS, BSMLHC 2011

+

+ Some SUSY Scenarios

> mSUGRA/CMSSM:

- m₀: common scalar mass
- m_{1/2}: common gaugino mass
- A₀: common trilinear coupling
- tan β: ratio of Higgs vacuum expectation values
- sign(µ): sign of SUSY Higgs potential parameter

> GMSB:

- A: SUSY breaking scale
- M: messenger mass scale
- N: number of messenger fields
- tan β: ratio of Higgs vacuum expectation values
- sign(µ): sign of SUSY Higgs potential parameter
- C_{grav}: ratio of the gravitino mass to its value at the breaking scale Λ