

2263-26

Beyond the Standard Model: Results with the 7 TeV LHC Collision Data

19 - 23 September 2011

Searching for the Higgs Boson with tau leptons at CMS

Joshua Swanson University of Wisconsin U.S.A.

Searching for the Higgs Using τ Leptons in CMS

Joshua J Swanson on behalf of the CMS collaboration

Outline

+ Tau Reconstruction in CMS

+ H \rightarrow ZZ \rightarrow 2l2 τ (l=e μ) analysis overview

+ H \rightarrow $\tau\tau$ analysis overview

http://cms-physics.web.cern.ch/cms-physics/public/TAU-11-001-pas.pdf

NISIN

Tau ID – Hadron Plus Strips (HPS)

 $+\tau$ leptons decay to one or more hadrons 64% of the time.

+Charged hadrons are combined electromagnetic objects, arranged in strips or single photons

+ Taus are isolated using a dR cone around the leading charged candidate after removing the reconstructed tau decay products.

Decay Mode Reconstruction

Performance of τ reconstruction in CMS

- + HPS provides very efficient hadronic tau identification with a very manageable fake rate.
- + Efficiency is measured in data using $Z \rightarrow \mu \tau$ events.
- + Fake rate is measured in data using di-jet events.

$H \rightarrow ZZ \rightarrow 2l_{2T}$ analysis

http://cms-physics.web.cern.ch/cms-physics/public/HIG-11-013-pas.pdf

$H \rightarrow ZZ \rightarrow 2l2\tau$, Analysis Overview

+ 8 Final States Considered

- + Leading $Z \rightarrow \mu\mu$ or ee, on shell passing di- μ or di-e trigger
 - + $p_T > 20(10)$ GeV for leading (sub-leading), $|\eta| < 2.4(2.5)$ for $\mu(e)$
- + Subleading $Z \rightarrow \tau \tau$, decaying to (h,e, μ)
 - + $p_T > 20 (\tau), 10 (e,\mu) \text{ GeV}; |\eta| < 2.3 (\tau) 2.4 (\mu) 2.5 (e)$
- + ииет, ииит, иитт, ииеи, ееет, ееит, еееи
- + Dominant Backgrounds:
 - + Irreducible ZZ
 - + Reducible: Z+jets, WZ, Zbb/cc, TT, QCD
 - Crossover from 4 light lepton (41) final states, with one of the leptons faking a τ

ZZ Background Estimation

+ ZZ estimation based on comparison to inclusive Z production:

$$N_{ZZ}^{\text{estimated}} = N_Z^{\text{obs}} \cdot \frac{\sigma_{ZZ}^{\text{SM}} \cdot A_{ZZ}}{\sigma_Z^{\text{SM}} \cdot A_Z}$$

+10% systematic due to theory error on σ_{ZZ} and statistical error for ZZ MC.

	N_{ZZ}^{exp}	N_{ZZ}^{est}
μμττ	0.142 ± 0.013	0.145 ± 0.013
μμμτ	0.281 ± 0.017	0.287 ± 0.018
μμετ	0.316 ± 0.019	0.323 ± 0.019
иµеµ	0.179 ± 0.014	0.183 ± 0.014
eeττ	0.120 ± 0.012	0.125 ± 0.012
ееµτ	0.240 ± 0.016	0.250 ± 0.017
eeeτ	0.311 ± 0.018	0.323 ± 0.019
еееµ	0.157 ± 0.013	0.163 ± 0.014

Expected and Estimated ZZ background in 1.1 fb⁻¹

Reducible background estimation

+ Select Z+Jet like events in lltt channels:

+SS, No Tau Iso

+Functional form of the fake rate vs. p_T is found by preforming a fit.

+Fake rate applied to signal like region:

+OS, Tau anti-isolated

Channel	Estimated Events		
eeττ	0.084 ± 0.004		
μμττ	0.066 ± 0.004		
ееет	0.24 ± 0.07		
μμετ	0.12 ± 0.05		
ееμτ	0.07 ± 0.04		
μμμτ	0.05 ± 0.03		
иµеµ	0.12 ± 0.09		
еееµ	0.06 ± 0.05		

4 Lepton Mass Spectrum

- + Combined 41 visible mass plot for all 8 channels.
- + ZZ, WZ/Z+Jets stacked with Higgs overlaid.
- + Backgrounds normalized to value from data driven estimate.

Limit, CLs using Shapes

- + Limits are done using visible 41 mass shape.
 - Shapes are allowed to morph with respect to τ energy scale uncertainty.
- Expected and Observed
 95% CLs limits are ~10
 times the SM between 200 400 GeV/c² with 1.1 fb⁻¹

$H \rightarrow \tau \tau$ Analysis

http://cms-physics.web.cern.ch/cms-physics/public/HIG-11-020-pas.pdf

Event Pre-selection

Analysis is performed using three final states

μ+τ		е+т		
• Trigger		• Trigger		
•	μ(15)+τ(15/20)	•	е(18)+т(20)	
Offline		Offline		
•	μ Ρ _τ >15 GeV, η<2.1	•	e Ρ _τ >20 GeV,η<2.1	
•	τ Ρ _τ >20 GeV, η<2.3	•	τ Ρ _τ >20 GeV, η<2.3	
•	Opposite charge		Opposite charge	
	e+µ			
	Trigger			
	⊷ μ(17/8)+	⊦e(8/17)		
	↓ Offline			
	→ μP _T > 20	0/10 GeV,η<2.1		
	• e P _T >10	/20 GeV, η<2.5		
8/26/11	↓ Opposi	te charge	Joshua Swanson UW-Madison	

Event Categorization

Analysis is performed using four categories

MSSM(b-tag)

- Require less than 2 jets with P_T>30 GeV
- Require at least one b-tagged jet with P_T>20 GeV

SM(VBF)

- Require exactly two jets with P_T>30 GeV,opposite η
- Require ∆n(jj) >3.5, M(jj)>350
 GeV

MSSM(No b-tag)

- Require less than two jets with P_T>30 GeV
- Require no b-tagged jets with P_T> 20 GeV

<u>SM(No VBF)</u>

- Require less than two jets with P_T>30 GeV
- OR two jets failing VBF criteria

Categorization related variables

Visible Mass after all requirements(μ+τ)

17

Joshua Swanson UW-Madison

8/26/11

MSSM

SM

Visible Mass after all requirements(e+τ)

MSSM

SM

Joshua Swanson UW-Madison

Visible Mass after all requirements(e+µ)

Joshua Swanson UW-Madison

19

8/26/11

NS M

MSSM

Background estimation and systematics

- $Z \rightarrow \tau \tau$ and TTbar : irreducible
 - Estimated from CMS σ(Z) /σ(ttbar)
- Data driven estimation for QCD/W+jets
 - OS/SS+W sideband for I+τ
 - Fake rate for e+μ
- Constrained fit performed to extract signal cross section or set limit
 - Background and systematic uncertainties as nuisance parameters
 - Shapes from data(QCD) or MC
 - Shape agreement checked in sideband regions
 - MC shapes allowed to vary in the fit

Systematic uncertainties

Source	Uncertainty	
Lepton ID /trigger	1%	
Tau ID efficiency	6%	
Tau energy scale	3%	
$\sigma(Z \to \mu \mu / ee)$	3%	
σ(ttbar)	12%	
B-Tag Efficiency	10%	
B-Tag Mistag rate	14%	
Jet energy scale	2-5%	
PDFs	3%	
UE/Parton Shower	4%	
QCD Scale	4-12%	
Luminosity	6%	

MSSM Higgs search results

- No significant excess observed in MSSM search
- Limits set on cross section xBR($\Phi \rightarrow \tau \tau$)
- Using CLs method
- σ x BR Limit not model independent
 - MSSM specific
 - bbH/ggH cross section ratio constrained to the ratio in MSSM
 - tanβ = 30
 - Changes with M_A

CMS statement on the MSSM with 1.6 fb⁻¹

- MSSM mostly excluded at M_A
 120 (CMS-LEP)
- Opening new regime at high
 M_A
- Huge improvement wrt 2010 result
 - B-tagging/tau ID efficiency and more data!

SM Higgs search results

- Expect to exclude < 5x SM in low mass region
- Observed compatible with expectation
- Included in the CMS grand combination
- Achieved much better sensitivity compared to projections
 - Tau ID / Trigger improvements
- Full analysis potential not exploited yet

Conclusions

- + CMS tau ID is performing very well, this allows us to extend analyses in ways that were previously not possible
- + No excess above the standard model is observed in any of the search channels
- + $ZZ \rightarrow 2l2\tau$ analysis improves standard model Higgs search power and exclusion limits for $M_H > 200 \text{ GeV}$
 - + Limits are ~10 times the standard model 200-400 GeV with 1.1 fb⁻¹ of CMS data.
- + H $\rightarrow \tau\tau$ analysis is benefiting from many factors allowing significant Higgs search power and exclusion limits for low M_H
 - + Limits for MSSM H $\rightarrow \tau\tau$ is nearly excluded completely at low M_H with 1.6 fb⁻¹ of CMS data.
 - Limits are ~5 times the standard model 120-130 GeV with 1.6 fb⁻¹ of CMS data.

τ ID efficiency

- + Efficiencies and fake rates measured using 2010, 2011 data
 - + Tag and probe and combined fit methods
- + τ reconstruction and ID are well understood in both 2010 and 2011 data, with Data/MC = 0.99±0.07
- 6% (6.8% Medium) uncertainty in Data/MC with tag and probe method

Tau Fake Rates

- + Tau fake rates measured with data using a tag and probe method in di-jet events.
- + HPS Loose has fake rates as low as 1% from QCD jets.

Tau Energy Scale

+ Tau energy scale measured with 3% uncertainty.

Event Selection, Leading Z

- + Double Electron (17-8) and Double Muon (13-8, 7-7) Triggers
- + Leading Z always decays to on shell $ee/\mu\mu$ pair
 - + $p_T > 20 (10)$ GeV for Leading (Sub-Leading) legs
 - + $60 < M_{ll} < 120 \text{ GeV}$
- + Lepton ID
 - + e: CiC Tight (ID Only), < 2 missing tracker hits
 - + μ : Global, nHits > 10
- + Relative PF Isolation
 - + e: $I_{rel} < 0.2$
 - + $\mu: I_{rel} < 0.25$

Event Selection, Sub-leading Z

+ Exclusively ττ decay

+ Cuts are final state dependent

+ τ:

- + HPS Loose $(e\tau, \mu\tau)$, HPS Medium $(\tau\tau)$
- + Loose electron discrimination
- + Loose Muon discrimination $(e\tau, \tau\tau)$, Tight μ discrimination $(\mu\tau)$

+ e:

- + CiC Tight (ID Only)
- + PF Iso < 0.05 (et), 0.2 (eµ)
- + Missing Inner Tracker Hits: $<2 (e\mu), <1 (e\tau)$

+ μ:

- + PF Iso: $< 0.15 \ (\mu\tau), < 0.25 \ (e\tau)$
- + VBTF μ ($\mu\tau$); Global, nHits>10 (e μ)
- + $30 < M_{Z2} < 80$ (et, $\mu\tau$, $\tau\tau$) to reduce ee/ $\mu\mu$ overlap.

Systematics $(H \rightarrow ZZ)$

- + Systematic uncertainties impacting expected yields:
 - + Impacting signal:
 - Luminosity (4.5%)
 - + H cross section (17-20%)
 - + Electron reconstruction+ID+isolation efficiency (1-6%)
 - + μ reconstruction+ID+isolation efficiency (1-3%)
 - + τ ID efficiency (6-6.8%)
 - + τ energy scale (3%)
 - + Trigger Efficiency (1%)
 - + 10% uncertainty in ZZ background estimate (dominated by crosssection uncertainty)
 - + 30% uncertainty in WZ/Z+jets background estimate

Systematics $(H \rightarrow ZZ)$

Channel	e Reco / ID/ Iso	μ Reco / ID / Iso	τ ID/ Iso	au Energy Scale	Trigger
μμττ	-	1 %	10 %	4 %	1 %
μμμτ	-	2 %	6 %	3 %	1 %
μμετ	6 %	1 %	6 %	3 %	1%
иµеµ	3 %	2 %	-	-	1%
eeττ	2 %	-	10 %	4 %	1%
ееμτ	2 %	1 %	6 %	3 %	1%
eeeτ	6 %	-	6 %	3 %	1%
еееµ	4 %	2 %	-		1 %

Table 4: Channel specific systematic uncertainties.

- + Summary of channel specific systematics.
- + Largest come from:
 - + 6-10% for Tau ID Efficiency
 - + 6% on 3rd tight electrons

Z+Jets enriched region

- + Data/MC comparison for SS region where fake rates are measured.
- + Dominated by Z+Jets background, negligible signal contribution.

Topological requirements

- Neutrinos from taus tend to be collinear to the visible part
 - Not the case for W+jets and TTBar
- Define P_c variables(introduced in CDF)
 - Project visible di-tau transverse momentum vector and MET in the bisector axis of the visible products

UW-Madisor

Request collinearity between visible and missing E_T part

Topological requirements

- Neutrinos from taus tend to be collinear to the visible part
 - Not the case for W+jets and TTBar
- Define P_z variables(introduced in CDF)
 - Project visible di-tau transverse momentum vector and MET in the bisector axis of the visible products
 - Request collinearity between visible and missing E_T part

Background estimation(l+τ)

- Dominant backgrounds: QCD/W+jets
- W extrapolated from low P^{ζ} region (P^{ζ} <-40)
 - Separately for OS/SS (6% systematic for extrapolation factor)
- Z +jets backgrounds estimated from CMS measurement corrected for $I \rightarrow \tau$ and $j \rightarrow \tau$ fake rates
- TTBar from CMS measurement , Diboson from MC (30% uncertainty)
- In SS region W and other backgrounds are subtracted (QCD remaining)
- QCD extrapolated to OS region by a factor from data (~1.06 +- 5%)

36

Acceptance x Efficiency vs mass

Tau Trigger Performance (l+τ)

- Triggers are using Particle
 Flow
- Energy of Tau in high level trigger is created only by the PF constituents
 - Consistent with offline tau
 - Small turn on effects

Establishing the standard candles

