

2263-38

Beyond the Standard Model: Results with the 7 TeV LHC Collision Data

19 - 23 September 2011

4th Generation Searches in CMS

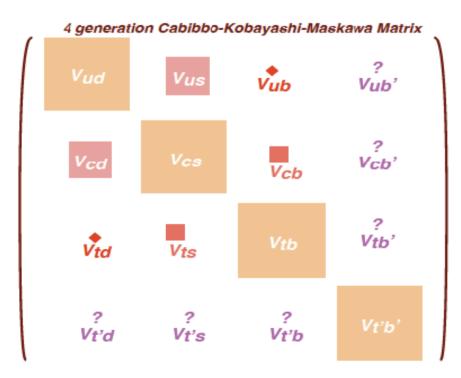
Sadia Khalil Kansas State University U.S.A.

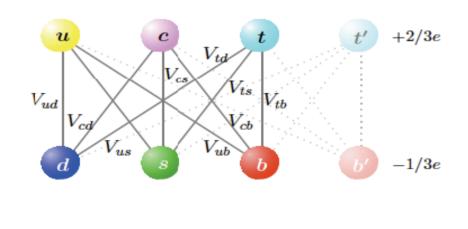
Searches for 4th Generation at CMS Experiment

Sadia Khalil

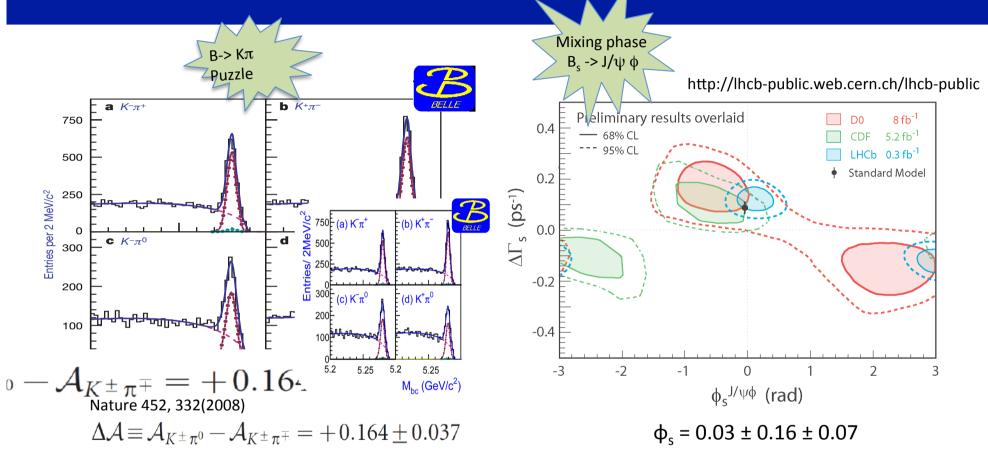
Kansas State University On behalf of CMS Collaborations

<u>Beyond the Standard Model: results with the 7 TeV LHC Collision Data</u> The Abdus Salam ICTP, Trieste, Italy

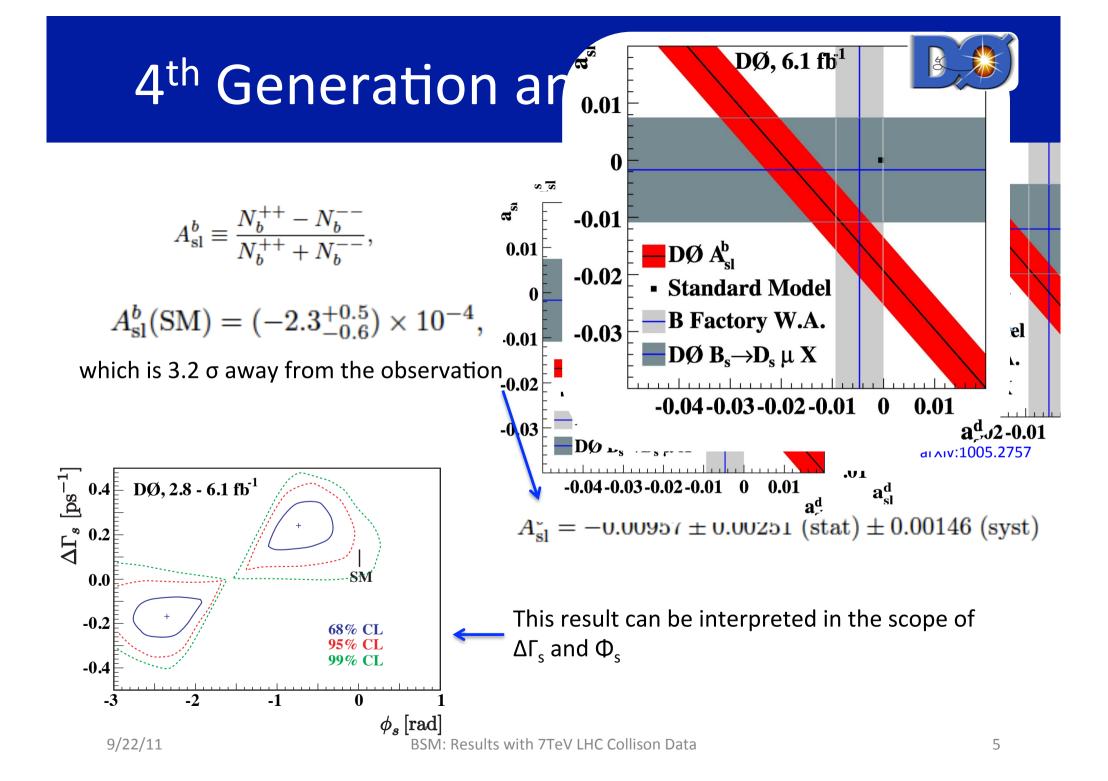

22 Sep, 2011

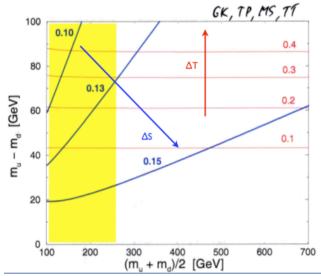

Outline

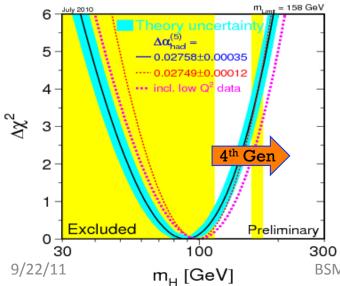
- Why the fourth generation?
 - Flavor Physics
 - The fourth generation is not excluded by EWK precision data
 - New CP source for Baryogenesis
- Results from other experiments
- Results from CMS
- Summary


4th Generation (SM4)

- SM4 is a simple extension of SM3 = $SU(3) \times SU(2) \times U(1)$
- It could explain some observed discrepancies




4th Generation and Flavor Physics


Since t-quark is non-decoupled, introducing t' in bcZ penguin for B⁺-> K π^0 and in the box diagram for B mixing brings in new CPV phase via $V_{ts}^* V_{tb} = r_s e^{i\phi_s}$

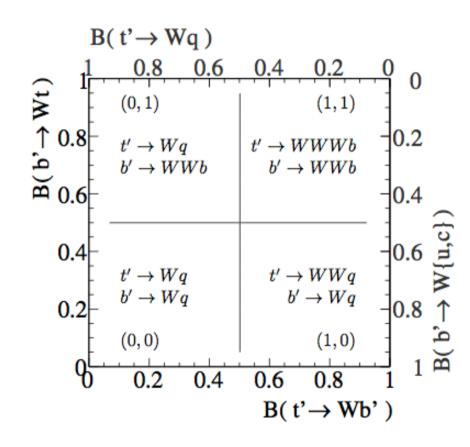
4th Generation and EWK precision data

G. Kribs, T. Plehn, M. Spannowsky, T. Tait PRD 76 (2007) 075016

- Constraints from electroweak precision data require small oblique corrections: ΔS, ΔT, ΔU
- If SM4 exists, expects small mass splitting between 4-th generation t' and b':
 - $|m_{t'} m_{b'}| < m_W$
- m_{t'} and m_{b'}
 ~ a few hundreds GeV
- b-quark A_{FB} shows ~ 2.6 σ deviation
- Tension could be resolved by introducing quarks with non-V-A couplings (Vector Like quark).

Baryogenesis with 4 Generations

- SM3 falls short of the needed level of baryogenesis by at least 10 orders of magnitude
- With four generations, one can construct 3 independent CP odd Jarlskog invariant, one of which is proportional to two of the bigger masses


$$J_{234} = 2(m_{t'}^2 - m_t^2)(m_{t'}^2 - m_c^2)(m_t^2 - m_c^2)(m_{b'}^2 - m_b^2)(m_{b'}^2 - m_s^2)(m_b^2 - m_s^2)A_{234}$$

• From the heavy mass dependence $(m_{t'}, m_{b'} \sim 300 \text{ to } 600 \text{ GeV})$, there is a huge gain over the single three generation invariant:

$$\frac{J_{234}}{J}$$
: 10¹⁵⁻¹⁷ From David Atwood, DPF2011

- Baryogenesis now becomes possible [George W. S. Hou 2008]
- One advantage of this kind of model over CPV from random new physics is that fermion edm's are naturally small.

Search for t't': t'->Wq, Wb

- <u>Main Decay Modes:</u>
 - *t'->Wb, Wq*
 - B'-> tW, Wq
- <u>Search for:</u>
 - *Q->Wq, Wb, tW=WWb, tZ=WbZ*
 - Similar to top quark production and decay
- <u>Search Strategy:</u>
 - Reconstruct mass of the top (t') quark
 - H_{τ} and S_{τ} (in coming slides)

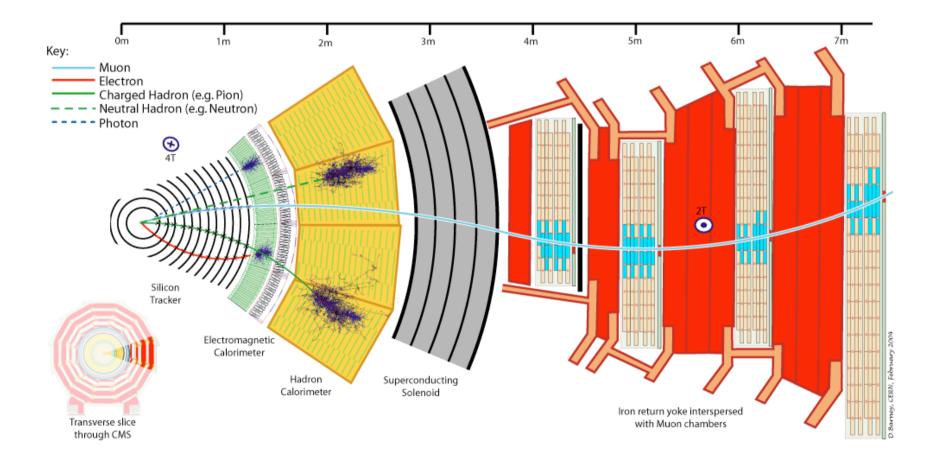
Constraints by experiments

• Constraints on the pair produced b' mass:

 $-m_{b'} > m_t + m_w$ favored, and limit $m_{b'} > 338$ GeV

CDF 'Search for New Bottomlike Quark Pair Decays QQ \rightarrow (tW)(tW) in Same-Charge Dilepton Events', Phys. Rev. Lett. 104 (2010) 091801

- $m_{b'}$ > 385GeV direct search: $b'\bar{b'} \rightarrow WtW\bar{t} \rightarrow WWbWW\bar{b} \rightarrow \ell\nu qq'bqq'qq'b$


CDF Phys. Rev. Lett. 106, 141803 (2011)

- Constraints on the pair produced t' mass:
 - $m_{t'} > 358$ GeV direct search

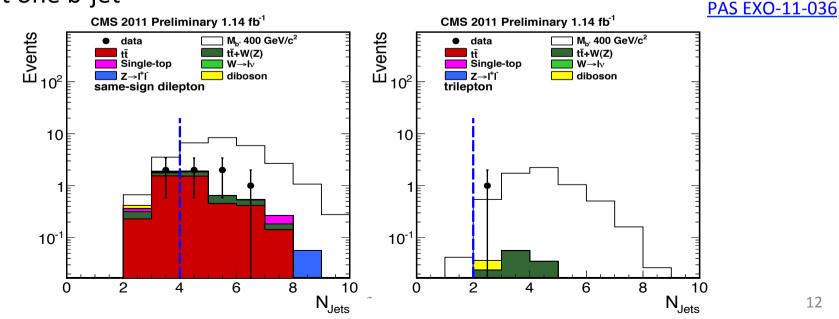
CDF arXiv:1107.3875(submitted to PRL), D0 arXiv:1104.4522)

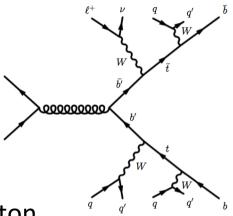
- $m_{t'} m_{b'} < 50 \text{GeV from precision electroweak measurements}$ Kribs, PRD 76 075016 (2007) Eberhardt, Lenz, Rohrwild, PRD 82 095006 (2010)
- m_{Q4} > 270 dilepton + jets (L=37 pb⁻¹) ATLAS: ATL-PHYS-SLIDE-2011-223

Searches for 4th generation quark at CMS

Relevant final states

- $b'b'' \rightarrow tWtW \rightarrow bWWbWW$
 - 4 or 6 Jets from 1 or 2 W \rightarrow qq including 2 b-jets
 - Ws decay to two same sign charged leptons or three isolated leptons (i.e. dilepton and trilepton - has small SM background and large B.R.)
- T'T' \rightarrow tZtZ \rightarrow bbWWZZ
 - ≥ 2 Jets from W $\rightarrow qq$, Z $\rightarrow qq^{-1}$ including 2 b-jets
 - $Z \rightarrow I^+I^-$ and one W decays to isolated lepton i.e. trilepton decay
- $t'\bar{t'} \rightarrow bbWW$:
 - one W decays leptonically, the other hadronically i.e. 4 jets including 2 b jets + 1 visible lepton
 - two W decays leptonically, 2 b jets + 2 visible lepton

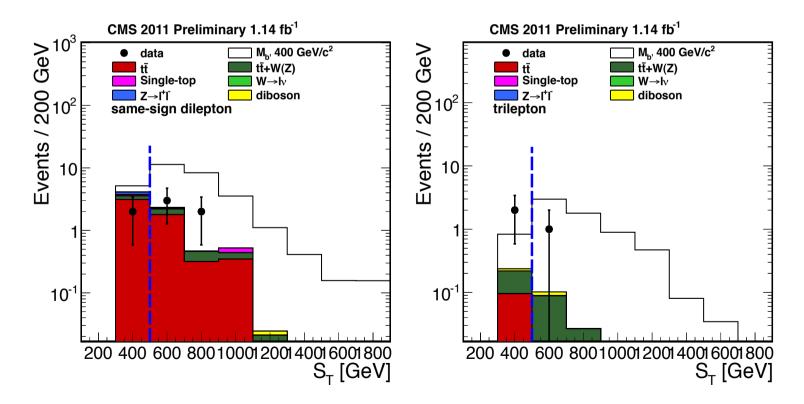

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO


Search for $b'\bar{b'} \rightarrow tWtW \rightarrow bWWbWW$

Selection

- At least one good interaction vertex ۲
- N(jets)>= 4(6) with p_{τ} > 25, $|\eta|$ < 2.5 ullet
- Z events are suppressed by requiring $|M_{\parallel} M_{z}| < 10 \text{ GeV/c}^{2}$ ullet
- Events with Njets < 4 (2) are rejected for the same-sign dilepton ullet(trilepton) channel.
- At least one b-jet ۲

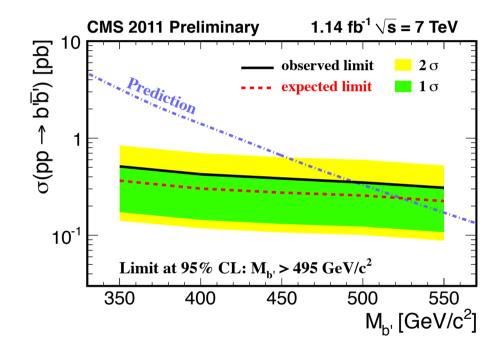
9/22/11


Search for $b'\bar{b'} \rightarrow tWtW$

• For each event, the scalar quantity, S_T is determined

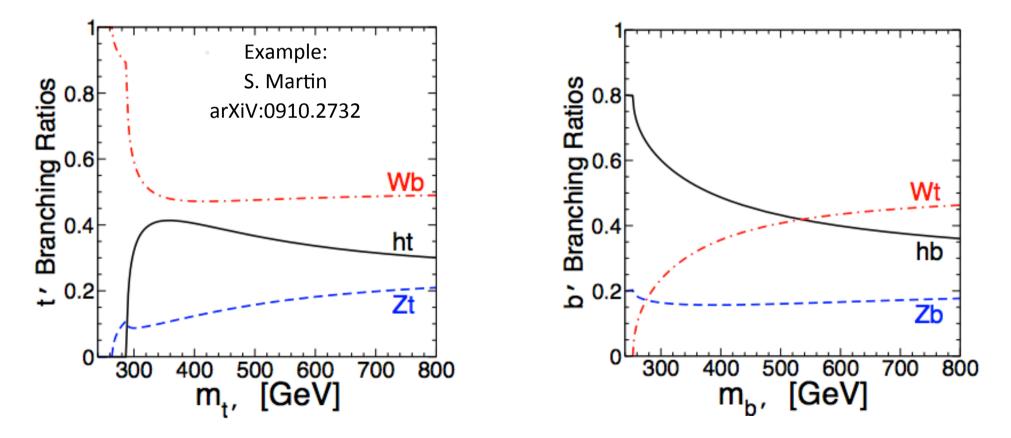
$$S_T = \sum p_T(jets) + \sum p_T(leptons) + \mathbb{E}_T$$

PAS EXO-11-036


• Require $S_T > 500 \text{ GeV}$

Search for $b'\bar{b'} \rightarrow tWtW$

PAS EXO-11-036

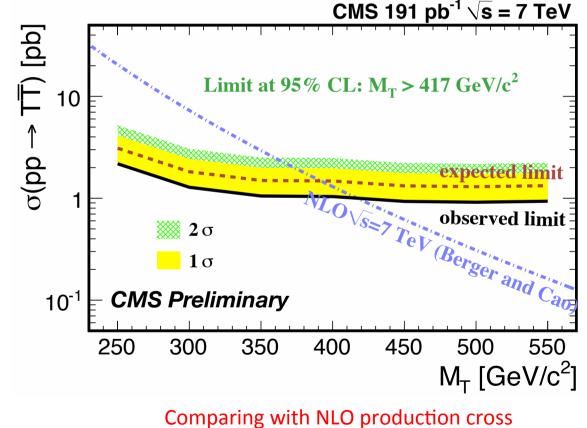

- For each m_b, hypothesis, selection efficiencies and associated uncertainties are estimated
- Upper limits on b'b⁻' cross sections at the 95% CL are derived using Bayesian method with a lognormal prior for the integration over the nuisance parameters.

Comparing with NLO production cross sections, $m_{b'} < 495 \text{ GeV/c}^2$ is excluded.

Vector-like quark T'

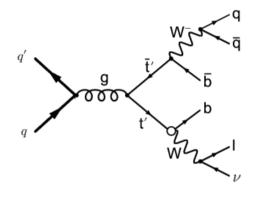
- No FCNC-suppression opens new decay modes, e.g. T'->tH, T'->tZ
- Can have production cross section enhanced due to different couplings to gauge bosons

Search for $T'T' \rightarrow tZtZ$


Search for T'T' \rightarrow tZtZ

See Yeng-Ming Tzeng talk for details

PAS EXO-11-005


Exclusion limit

 Use Bayesian statistics to compute observed limit at 95% CL and compare it with NLO x-sec

sections, $M_T < 417 \text{ GeV/c}^2$ is excluded.

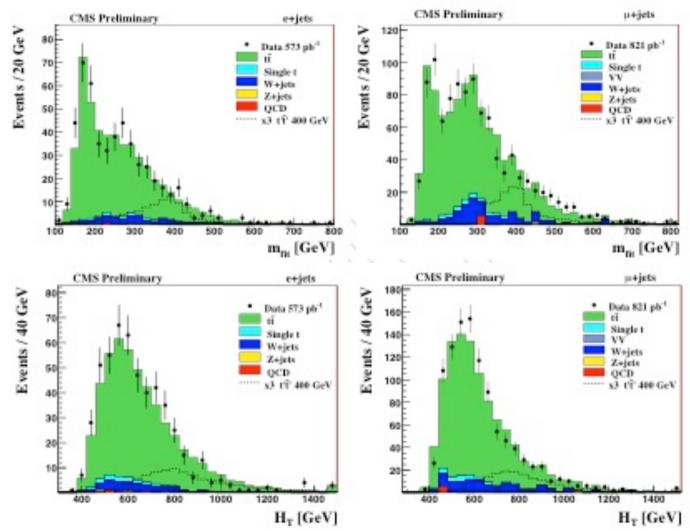
Search for t' $\bar{t}' \rightarrow bWbW \rightarrow blvbq\bar{q}$

Selection

- At least one good interaction vertex
- Electron p_T>30/35/45 GeV to match the trigger threshold, Muon p_T>35 GeV, |η|<2.1(2.5) for μ(e)
- E_T^{miss}>20 GeV
- At least 4 jets with p_T>120, 90,35,35GeV, |η|<2.4, ΔR(l,jets)>0.3
- ≥ 1 b jet

PAS EXO-11-051

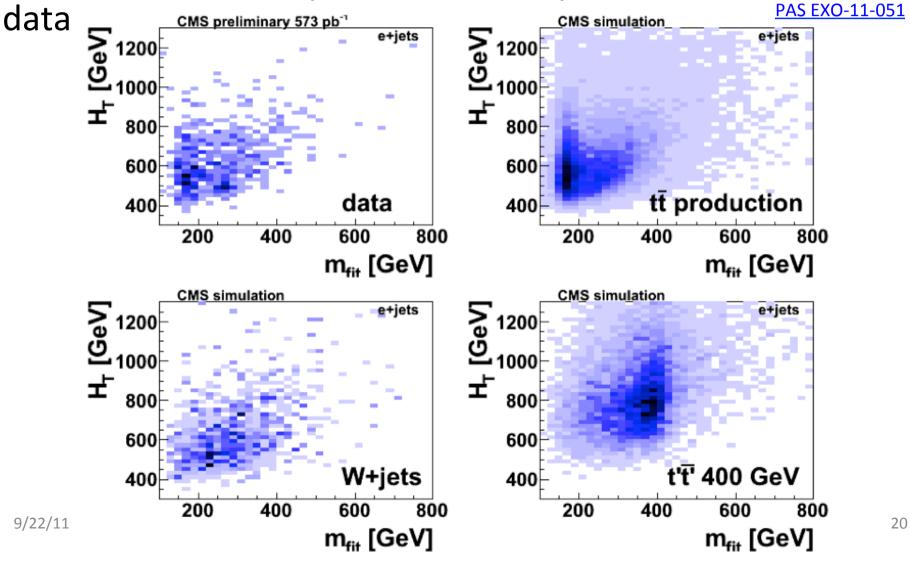
Mass Reconstruction


- Known measurements:
 - Lepton p_T
 - Neutrino p_T (E_t^{miss})
 - Jet p_T
- Unknown:
 - Z-component of neutrino
- Constrains
 - M(lv)=m(qq)=M_w
 - $M(lvb) = m(qqb) = M_{t,t'}$
- Possible jet combinations

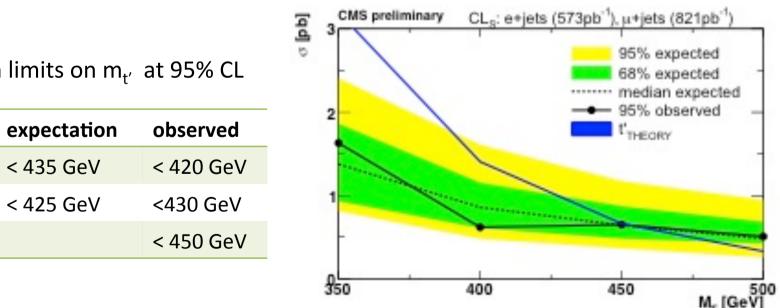
no of jets	combinations
4	12
5	60
6	180

- Minimize the χ^2 for each combination,
 - e + jets: try all 4-jet combs out of the leading 5 jets
 - μ + jets: use 4 leading jets. If 5th jet has highest btagging discriminant use it instead of 4th jet
- Using kinematic fit the fitted mass, m_{fit} is reconstructed

Search for t't' \rightarrow bWbW \rightarrow blvbqq


• Construct m_T and $H_T = \sum p_T(jets) + \sum p_T(leptons) + \mathbb{E}_T$

PAS EXO-11-051


Search for t't' \rightarrow bWbW \rightarrow blvbqq

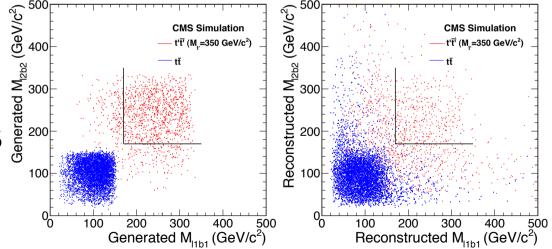
 Statistical analysis of the 2D distribution of m_{fit} and H_T, is used to test for the presence of t't̄' production in the

Search for $t'\bar{t}' \rightarrow bWbW \rightarrow blvbqq$

- In limit calculation, use two hypothesis •
 - Background only hypothesis, minimize w.r.t nuisance parameters
 - Signal + background hypothesis, minimize w.r.t signal cross-section
 - Test statistics, $L = L_{s+h}/L_h$
- 95% CL upper limit for the signal cross section is the value of σ for ulletwhich $C_{LS} = CL_{s+b}/CL_{b} = 0.05$

Exclusion limits on m_t, at 95% CL

expectation	observed
< 435 GeV	< 420 GeV
< 425 GeV	<430 GeV
	< 450 GeV
	< 435 GeV

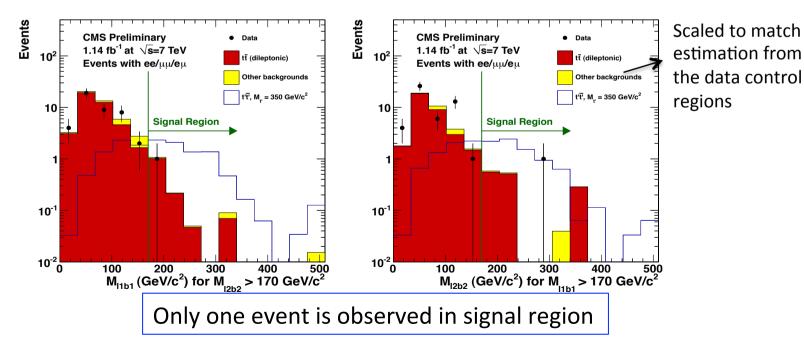

PAS EXO-11-051

Search for t' $\bar{t}' \rightarrow bWbW \rightarrow blvblv$

- Motivation
 - $m_{t'} < m_{b'}$
 - $m_{t'} > m_{b'}$ with $m_{t'} m_{b'} < m_{w}$ favored
- Selection
 - At least one good interaction vertex
 - p_T(e, μ)>20GeV
 - Zveto: Event are removed if
 76GeV < M_z <106 GeV
 - N(jets)>= 2 with p_T > 30, $|\eta| < 2.5$
 - 2 b-tag jets
 - $E_T^{miss} > 30 GeV$

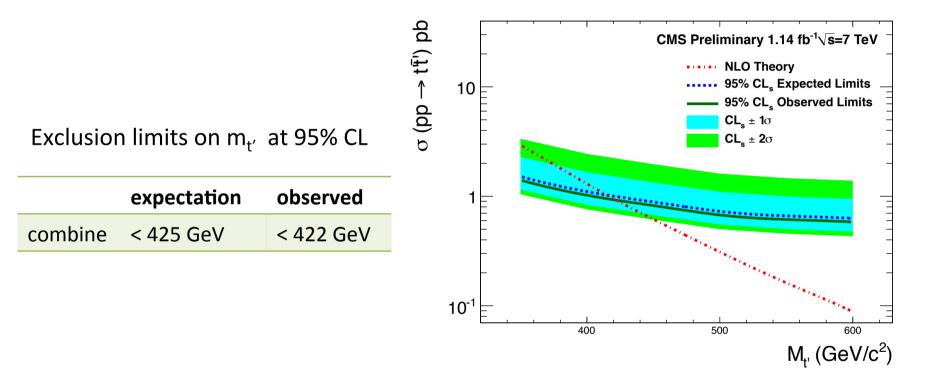
- Variables
 - Mass of one pair of leptons and jets: M_{l1b1} and mass of second pair of leptons and jets: M_{l2b2} from t/t' or $\overline{t}/\overline{t'}$ decay.

PAS EXO-11-050



Signal Region = M_{l1b1} , M_{l1b1} > 170 GeV/c²

Search for t't' \rightarrow bWbW \rightarrow blvblv


Sample	Yield	Prediction source
$t\bar{t} \to \ell^+ \ell^-$	1.35 ± 0.67	Data
Fake leptons	$0.0^{+0.4}_{-0.0}$	Data
$DY \rightarrow e^+e^- \text{ or } \mu^+\mu^-$	$0.07_{-0.07}^{+0.13}$	Data
${ m DY} ightarrow au^+ au^-$	0.11 ± 0.11	Simulation
Di-boson	0.02 ± 0.02	Simulation
Single top	0.07 ± 0.04	Simulation
Total prediction	$1.62^{+0.80}_{-0.70}$	
Data	1	

PAS EXO-11-050

Search for t't' \rightarrow bWbW \rightarrow blvblv

PAS EXO-11-050

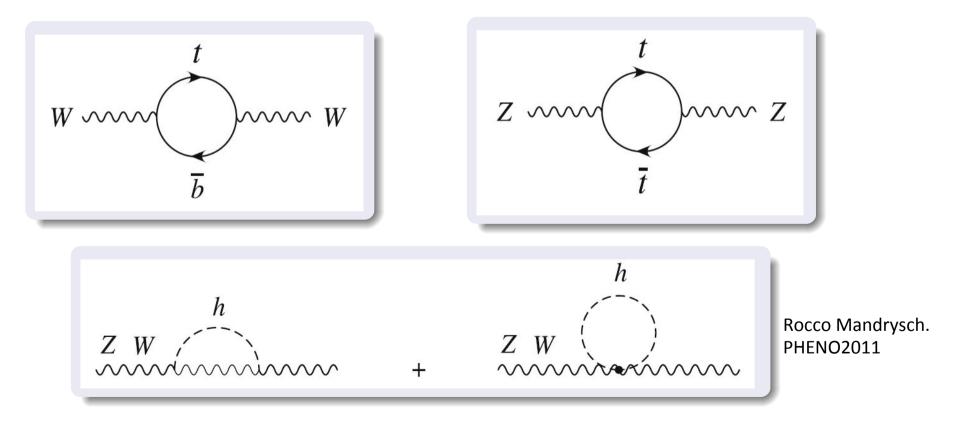
$M_{t'}$	$350 \text{ GeV}/c^2$	$400 \text{ GeV}/c^2$	450 GeV/ c^2	$500 \text{ GeV}/c^2$	550 GeV/ c^2	$600 \text{ GeV}/c^2$
Theory (pb)	2.940	1.301	0.617	0.310	0.162	0.088
Expected (pb)	1.517	1.103	0.888	0.728	0.662	0.628
Observed (pb)	1.406	1.022	0.823	0.675	0.613	0.582

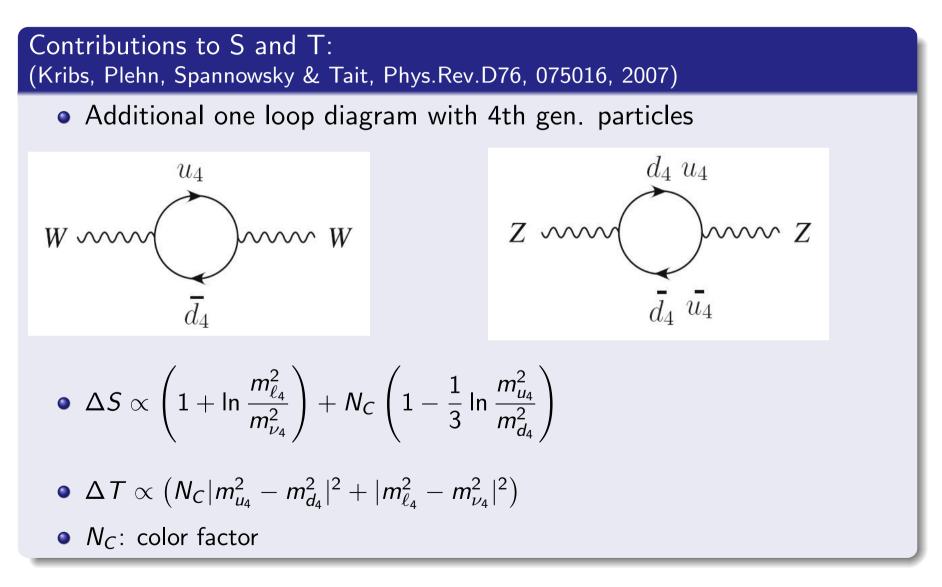
Summary

 Presented the results for the 4th Generation quark searches at CMS

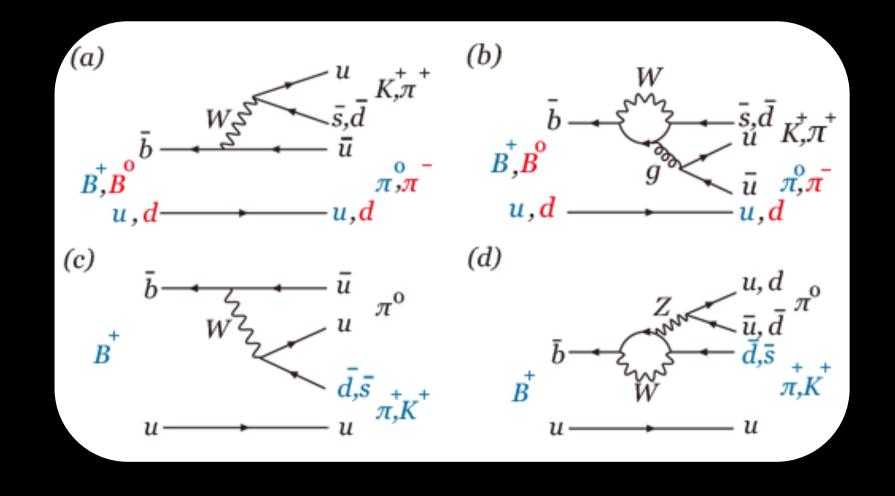
Search	Excluded region@95%CL
$b'b'' \rightarrow tWtW \rightarrow bWWbWW$	m _{b'} < 495GeV
$T'T' \rightarrow tZtZ \rightarrow bbWWZZ$	M _T < 417GeV
t't̄' →bbWW (l+jets)	m _{t'} < 450GeV
t't̄' →bbWW (dilepton + jets)	m _{t'} < 422GeV

• Stay tuned!


EWK Precision Fit

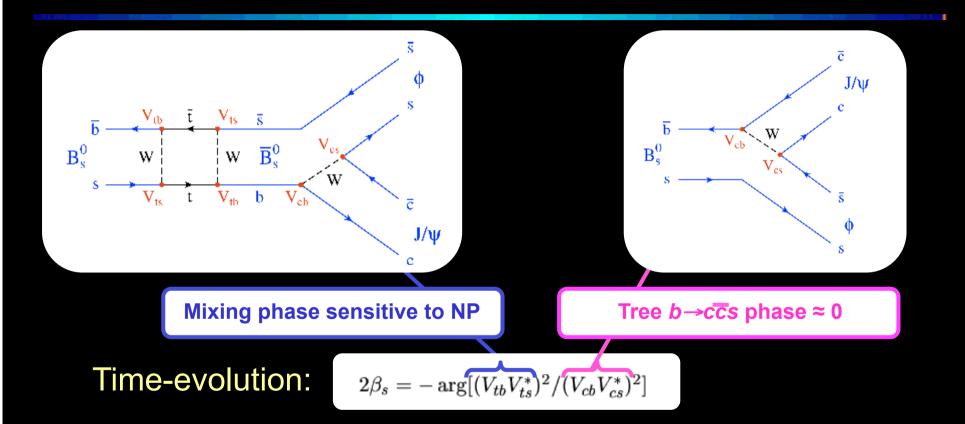

Graham D. Kribs, Tilman Plehn, Michael Spannowsky and Tim M. P. Tait Four generations and Higgs physics Phys. Rev. D, 76(7):075016, Oct 2007

STU Formulism


- S: sensitive to chirally coupling fermion $\iff W^{\pm}, Z$ and H self energy diagrams
- T: sensitive to mass splitting $\iff W^{\pm}$ and H self energy diagrams

Mass splitting within a 4th Generation

 $B^0 \rightarrow K^+\pi^- vs B^+ \rightarrow K^+\pi^0$



BSM: Results with 7TeV LHC Collison Data

D Tonelli- Fermilab

14/60

$B_{s}^{0} \rightarrow J/\psi\phi$ - the golden probe

CKM hierarchy predicts 2β s tiny with ~zero theory error. Any significant deviation is golden probe for new physics entering the box.

BF2010-2010-05-26

BSM: Results with 7TeV LHC Collison Data

Baryogenesis with 3 Generations

- The CPV needed to drive baryogenesis cannot be provided by the SM3, since masses of the first two generations are small
- In quark sector, CPV is contained in the mass matrices

$$L_q = -M_{ij}^d \overline{d}_{Li} d_{Rj} - M_{ij}^u \overline{u}_{Li} u_{Rj} + h.c.$$

$$M = \frac{\langle v \rangle}{\sqrt{2}} \lambda$$

• With 3 generations, a unique CP odd invariant can be constructed from these matrices and is invariant under field redefinitions (Jarlskog 1987):

$$J = \operatorname{Im} \det[M_{u}M_{u}^{\dagger}M_{d}M_{d}^{\dagger}]$$

$$= 2(m_{t}^{2} - m_{u}^{2})(m_{t}^{2} - m_{c}^{2})(m_{c}^{2} - m_{u}^{2})(m_{b}^{2} - m_{d}^{2})(m_{b}^{2} - m_{s}^{2})(m_{s}^{2} - m_{d}^{2})A$$
Area of unitarity triangle

• Numerically, this quantity is very small:

$$\frac{J}{\langle v \rangle^{12}}: 10^{-20}$$

• SM3 falls short of the needed level of baryogenesis by at least 10 orders of magnitude.