

2263-35

Beyond the Standard Model: Results with the 7 TeV LHC Collision Data

19 - 23 September 2011

Results from the ALICE experiment

Chiara Zampolli INFN Bologna Italy

Beyond the Standard Model: Results with the 7 TeV LHC Collision Data 19-23 September 2011, Trieste, Italy

LATEST RESULTS WITH THE ALICE EXPERIMENT AT LHC

C. Zampolli for the ALICE Collaboration

Outline

- The ALICE experiment
- pp collisions @ 7 TeV
 - Results
- PbPb collisions @ 2.76 TeV
 - Centrality
 - Results
- Summary and conclusions

The ALICE Experiment at LHC

- A Large Ion Collider Experiment is the general-purpose experiment at the CERN Large Hadron Collider (LHC) designed for heavy-ion physics.
- The ultimate gradis the study of the QGP
- Very rich Heavy-ion physics program spanning from the global charateristics of the event (multiplicities, η distributions...), to the properties of the system produced in the collisions (hadrochemistry, temperature, energy density, HBT, elliptic flow, jet...)
 - Precise tracking (low B field, low naterial budget) and performant Particle Identification required

ALICE has interest in pp collisions as well
Provide reference for PbPb
Genuine pp physics (ALICE complementary to CMS and ATLAS)LHCb

MC tune

ATLAS

A Large Ion Collider Experiment

ALICE

ALICE Detectors - requirements

- Dedicated to HI physics
 - Must be comprehensive and able to cover all the interesting observables
 - Very robust tracking from 0.1 to 100 GeV/c
 - High-granularity 3D detectors (TPC, ITS)
 - Low material budget
 - PID over a very wide momentum range
 - Use all known technologies
 - Hadrons, leptons, photons
 - Excellent vertexing
 - → Drawbacks:
 - \rightarrow slow detectors
 - \rightarrow Limited η acceptance

ALICE Data Taking

Year of Data Taking	Collision System	Energy	N. of Events, trigger
2009	рр	900 GeV	300K, MB
2009	рр	2.36 TeV	~40K, MB
2010	рр	900 GeV	~8M, MB
2010	рр	7 TeV	~980M, MB
			~50M, µ trigger
			~16M, high mult
2010	PbPb	2.76 TeV/N	>50M, MB
2011	pp	2.76 TeV	~40M, MB
			~9M, µ trigger
			~1.5M, high mult
		7 TeV	>700M, MB (*)
			~200M, µ trigger (*)

(*) being processed

ALICE

Trigger and Event Selection

- Minimum Bias Trigger
 - Coincidence among (in OR for pp):
 - SPD Fast-Or trigger (≥ 1-2 hits (pp-PbPb))
 - VZERO-A
 - VZERO-C
 - \rightarrow High efficiency wrt hadronic cross section (PbPb)
 - → Requirements changed during PbPb data taking period
- Ultra-peripheral trigger (PbPb)
 - ≥ 3 TOF maxi-pads
- Single-muon and di-muon (2011) trigger
- Zero bias trigger
- Offline event selection
 - Background rejection
 - Beam background: VZERO and TPC tracks vs SPD tracklets info
 - EM processes (PbPb): ZDC

ALICĖ

23/11/2009, P2: When and Where Everything Began

- pp
 - Reference to PbPb
 - Soft and semi-hard QCD
 - High-mult pp events
- Starting @ 900 GeV...

First publication "First proton—proton collisions at the LHC as observed with the ALICE detector: measurement of the charged-particle pseudorapidity density at $\sqrt{s}=900 \text{ GeV}''$, Eur. Phys. J. C (2010) 65: 111-125 (January 2010) with 284 events (and 1056 authors!)

23/11/2009, P2: When and Where Everything Began

- pp
 - Reference to PbPb
 - Soft and semi-hard QCD
 - High-mult pp events
- Starting @ 900 GeV...

ALICE event display of a 7 TeV collision in the central barrel

ALICE pp publications

- N_{ch} multiplicity & distributions:
 - 900 GeV
 - □ 900 GeV, 2.36 TeV
 - 7TeV
- p/p ratio (900 GeV & 7 TeV)
- Momentum distributions (900 GeV)
- Bose-Einstein correlations (900 GeV)
- Strangeness (K°, Λ, Ξ, Ω, φ) (900 GeV)
- Id charged particle spectra (900 GeV)
- Pion B-E correlations (900 GeV & 7 TeV)
- y and p_T of inclusive $J/\psi \rightarrow \mu\mu$, e^+e^- (7 TeV)
- Under final collab. Review
 - Multistrange
- Advanced
 - 7 TeV event properties (spectra, Id particles..)
 - D mesons
 - Di-hadron correlations
 - Event topology, underlying event
 - **α** π^ο
 - ...

EPJC: Vol. 65 (2010) 111 EPJC: Vol. 68 (2010) 89 EPJC: Vol. 68 (2010) 345 PRL: Vol. 105 (2010) 072002 PLB: Vol. 693 (2010) 53 PRD: Vol. 82 (2010) 052001 EPJC Vol. 71 (2011) 1594 EPJC Vol. 71 (2011) 1655 Sub. to PRD, arXiv 1101.3665 Acc. by PLB, arXiv 1105.0380

- Some well-ongoing analyses
 - Jet fragmentation
 - Photon multiplicity
 - Anti-nuclei production

· ..

Energy dependence

- Hadron- level definition used (INEL>o)
- Model dependent corrections and systematic error minimized
- dN_{ch}/dη~√s^{o.2}

Eur.Phys.J ALICE INEL>0 lηl < 1 $0.9 \text{ TeV} \rightarrow 2.36 \text{ TeV}$ - - - $0.9 \text{ TeV} \rightarrow 7.0 \text{ TeV}$ PHOJET 68:345-354,2010 PYTHIA Perugia-0 PYTHIA ATLAS-CSC PYTHIA D6T 20 40 60 Increase (%)

increase from 0.9 to 7 TeV ~ 57%
(NSD) – but models predict
~35-45%

Multiplicity Distributions

Energy dependence

Model comparison

Eur.Phys.J.C68:345-354,2010

• Good description from NBD for all three energies

 Comparison with different MC models not satisfactory – increase at high multiplicity not reproduced

Femtoscopy

To measure the size and the shape of the source

Energy independence of the 3 femtoscopic radii as a function of k_T

Linear scaling for the 3 femtoscopic radii, for every k_T , same for the 3 energies

p_T Spectra of Charged Particles

- pp p_T spectra measured up to 50 GeV/c (100 GeV/c with more statistics)
- pp reference for PbPb R_{AA} (see next slides) built from
 - pp data at 2.76 TeV, extrapolated at p_T > 30 GeV/c
 - Interpolation from 0.9 and 7 TeV data
 - NLO scaling of 0.9 and 7 TeV data

 4 analyses combined, using the ALICE PID techniques in the central barrel

dE/dx at low momentum

dE/dx up to ~50 GeV/c

TOF up to a few GeV/c

 4 analyses combined, using the ALICE PID techniques in the central barrel

Very good agreement within uncertainties among the 4 methods for the three particle species The same holds true for the opposite charges

Identified Particle Spectra results

- 4 analyses combined, using the ALICE PID techniques in the central barrel
 - Minimum p_T = 0.1 (π), 0.2 (K), 0.3 (p) GeV/c

Lévi fit superimposed, used to extract the total yield and the $< p_T >$

Identified Particle Spectra comparison to models

No satisfactory description of data from current MC models

 Perugia 2011: ok for K (full range) and p (from p_T ~ 0.7) but overestimates π at high p_T

Identified Particle Spectra ratios

p_T dependence

Energy dependence

21

Strangeness

- ັນ 1600 9 Me 1400 track + Topological Counts per Counts per 1000 P pp at√s = 7 TeV reconstruction track -DCA 06.05.2011 800 V0 K^o_s, Λ, Ω, Ξ մդ 600 R 400 Λ(1520)+<u>Λ</u>(1520), hl<0.9 Resonances IP+ 1.25 GeV/c < p < 1.50 GeV/c 200 IP primary vertex Κ*, φ, Σ 0∟ 1.4 1.5 1.8 1.9 2 Inv. mass (p K⁺p K⁺) (GeV/c²) 1.6 1.7 $\frac{1}{N_{evts}} \frac{d^2 N}{dp_T dy} (GeV/c)^{-1}$ 10⁻¹ <^{*0}+K^{*0}) / 2 $1/(2\pi N_{\text{inel. evts}}) \text{ d}^2 \text{N/dp}_t \text{ dy } |_{\text{y}_1 < 0.5} (\text{GeV/c})^{-1}$ 10⁻³ (Ξ[±]/2) CMS, NSD • Ξ⁻ • Ω⁻ lyl < 2, divided by $\Delta y = 4$ $\Xi^{*0} + \overline{\Xi^{*0}}) / 2$ 10⁻² ${}^{\Theta} \overline{\Xi}^{+}{}^{\scriptscriptstyle \Theta} \overline{\Omega}^{+}$ **ALICE Preliminary** 10^{-4} Uncert.: \stat²+syst ALICE 10⁻³ 10⁻⁵ ₹±, Ω^{\pm} 10⁻⁴ ALIC 10⁻⁶ ALICE data 2010 **ALICE Preliminary** $pp \sqrt{s} = 7 TeV$ 10⁻⁵ ALICE pp, INEL, $\sqrt{s} = 7$ TeV uncert = Vstat² + syst² Fitted with Lévy Functions 5 8 9 3 6 7 2 3 0 2 4 4 0 1 5 p_t (GeV/c) p_T (GeV/c)

Strangeness comparison to models

- Meson resonances quite well described by PYTHIA D6T tune
- Perugia 2011 good for charged K, see before underestimates resonances
- Baryon resonances always badly described by MC

Strangeness comparison to other experiments

Comparisons between particles

Easier to add a strange quark at high pt?MC completely out...

IRS parametrization out...

D mesons – open charm

D meson cross section

- Raw yields corrected for efficiency and acceptance
- B feed-down corrections using FONLL calculations
 - Evaluation from D meson impact parameter distributions (à la CDF) ongoing

Normalization using $\sigma_{\rm MB}$ from VdM scan

COMPATIBLE WITH pQCD (FONLL AND GM-VFNS) PREDICTIONS

D meson comparisons

 D^{*+} scaled by 5 not to overlap with D^{+}_{s}

ALICE Preliminary, pp, $\sqrt{s} = 7$ TeV ALICE Prelim. (tot. unc.) 8 p.>2 GeV/c, lyl<0.5 LHCb Prelim. (tot. unc.) p_>0, 2<y<4.5 6 e⁺e⁻ (tot. unc.) p,>0, mid-y Ratio H1 (tot. unc.) 4 p.>2.5 GeV/c, mid-y $\frac{D^0}{D^{\text{+}}}$ $\frac{D^0}{D^{*+}}$ $\frac{\mathbf{D}^{\mathbf{0}}}{\mathbf{D}_{\mathbf{s}}^{\mathbf{+}}}$ $\frac{\mathbf{D}^{+}}{\mathbf{D}_{s}^{+}}$ 0

Ratios in good agreement with the other experiments

Heavy Flavor Electrons

- Heavy Flavor (HF) Single Electron spectrum extracted from
 - a) "Cocktail" of background electrons sources (à la RHIC)
 - Photonic, dielectron decays of mesons, direct radiation, J/ψ, Y
 - b) Cut on impact parameter to select electrons, especially efficient for those from B

Ingredients:

- Measured π^o spectrum
- m_T scaling for the other mesons
- J/ψ and Y from ALICE and CMS measurements
- Ratio conversion/Dalitz from the known material budget

Heavy Flavor Electrons

- Heavy Flavor (HF) Single Electron spectrum extracted from
 - a) "Cocktail" of background electrons sources (à la RHIC)
 - Photonic, dielectron decays of mesons, direct radiation, J/ψ, Y
 - b) Cut on impact parameter to select electrons, especially efficient for those from B

Heavy Flavor Electrons from B

- Exploiting the very large impact parameter ($c\tau \approx 500 \ \mu m$, $m \approx 5 \ GeV/c^2$)
- Comparing with results combining cocktail analysis and D meson measurements

- **J/ψ** J/ψ → e⁺e⁻
 - at midrapidity (ITS+TPC) , |η| < 0.9
 - Signal extraction: bin counting
 - Background: like-sign technique

- $J/\psi \rightarrow \mu^+\mu^$
 - forward rapidity (MUON) , $-4 < \eta < -2.5$
 - Signal extraction: crystal ball
 - Background: double exponential

J/ψ

pp √s=7 TeV

• $J/\psi \rightarrow e^+e^-$

ALICE: arXiv:1105.0380v1 (2011), ATLAS: Nucl. Phys. B850 (2011) 387, CMS Phys. J. C71, (2011) 1575, LHCb Eur. Phys. J. C71 (2011) 1645

J/ψ → μ⁺μ⁻

- Good agreement with LHCb at forward rapidity
- Broad rapidity coverage, down to p_T = o GeV/c

J/ψ more results

- J/ψ from B
 - Based on the pseudo-proper decay length

J/ψ more results

 J/ψ from B

0.1 0^E

1

Based on the pseudo-proper decay length

> ATLAS pp, \style=7 TeV, ly_1/10 <0.75 ■ CMS pp, √s=7 TeV, ly_l/₀ l<1.2 • CDF pp, √s=1.96 TeV, ly _ l<0.6

Polarization systematics

C. Zampolli - ALICE ICTP, 23 September 2011, Trieste

ATLAS: Nucl. Phys. B850 (2011) 387,

Pb-Pb @ 2.76 TeV

05/11/2010, P2: Let's enter Wonderland!

- PbPb:
 - ALICE's Wonderland

Pb+Pb @ sqrt(s) = 2.76 ATeV

2010-11-08 11:29:42 Fill : 1462 Run : 137124 Event : 0x00000000271EC683

Main goal: to study the QGP

QCD Phase Diagram and QGP

 Lattice QCD predicts a transition from a hadronic to a QGP phase at T_c ~ 170 MeV for zero baryochemical potential

NSAC Long Range Plan 2007, The Frontiers of Nuclear Science

temperature, T/Tc

- Typical behavior of a phase transition
- The nature of the transition highly depends on the number of dynamical quark flavors included, and on the hypothesis for the quark masses

Space-Time Evolution of a Heavy-Ion

 T_c – Critical temperature for transition to QGP T_{ch} – Chemical freeze-out ($T_{ch} \leq T_c$)

 T_{fo} – Kinetic freeze-out ($T_{fo} \leq T_{ch}$)

- Kinetic freeze-out (no more elastic processes)
- Chemical freeze-out (no more inelastic processes)
- QCD phase transition QGP → Hadronic Matter
- Local thermalization QGP state

ALICE PbPb publications

- N_{ch} multiplicity
- Elliptic flow of charged particles
- R_{AA} of charged particles
- Centrality dependence of dN_{ch}/dη
- Two π B-E correlations
- Higher harmonic anisotropic flow
- HBT
- 2-particle angular correlations
- Ready for submission
 - $\bullet \quad \mathsf{I}_{\mathsf{A}\mathsf{A}} \text{ and } \mathsf{I}_{\mathsf{C}\mathsf{P}}$
- Advanced
 - v₂ for id-particles
 - R_{AA} of D mesons
 - Strangeness
 - Charge fluctuations

· . .

PRL: Vol. 105 (2010) 252301 PRL: Vol. 105 (2010) 252302 PLB: Vol. 696 (2011) 30 PRL: Vol. 106 (2011) 32301 PLB: Vol. 696 (2011) 328 Sub. to PRL, arXiv 1105.3865v1 Acc. by PLB, arXiv 1012.4035 arXiv 1109.2501

- Some well-ongoing analyses
 - Vector mesons
 - J/ψ
 - Heavy flavor electrons
 - Particle spectra
 - •

Centrality

- Impact parameter of the collision, b
 - Distance between the centers of the colliding nuclei, perpendicular to the beam axis
 - Small b → central collisions; small cross-section
 - Large b \rightarrow peripheral collisions; large cross-section

- The collision geometry (b) determines:
 - N_{part}: number of participant nucleons (soft)
 - N_{bin}: number of binary collisions (hard)
 - N_{spec}: number of spectators (N_{spec} = 2A N_{part})
 - \rightarrow Use these to determine centrality
 - \rightarrow Many observables scale with N_{part}

Centrality in ALICE

- VZERO amplitudes fitted with the Glauber supposing
 - $N_{ancestors} = \alpha N_{part} + (1-\alpha)N_{coll}$
 - Each ancestor emits particles following a NBD
- Fit above the anchor point 150 (~88% of the total hadronic cross-section) to have robust results (exclude EM background)
- Derive N_{part} and N_{coll} with the Glauber model
- Little dependence on the centrality estimator (ZDC, tracks, ZDC vs VZERO...)

Particle Production

Energy dependence

Particle Production

Energy dependence

Model Comparison

PbPb, $\sqrt{s_{NN}} = 2.76 \text{ TeV}$, 0-5% central, $|\eta| < 0.5 \text{ PbPb}$, $\sqrt{s_{NN}} = 2.76 \text{ TeV}$, 0-5% central, $|\eta| < 0.5$

Centrality Dependence

Centrality dependence

PbPb, $\sqrt{s_{NN}} = 2.76 \text{ TeV}$, $|\eta| < 0.5$

Similar behavior as found at RHIC

Model Comparison

Comparison with models

- DPMJET (with string fusion)
- HIJING (no quenching)
- Saturation models [12-14]

→ models incorporating a moderation of the multiplicity

with centrality are favored by the data

Femptoscopy

 Assess the space-time extension of the system that emits particles in PbPb collisions (homogeneity volume)

Homogeneity Volume

Decoupling Time from collision to hadron freeze-out

- Linear dependence on multiplicity
- V ~ 300 fm³, x2 as at RHIC

τ ~ 10-11 fm/c ,x1.4 as at RHIC

long

9 out

 $m_{\rm T} = \sqrt{k_{\rm T}^2 + m_{\rm T}^2}$

Femptoscopy

 Assess the space-time extension of the system that emits particles in PbPb collisions (homogeneity volume)

q out

p.

47

Centrality dependence of femptoscopic radii

Elliptic Flow

- Anisotropic distribution of matter in the overlap region leads to anisotropies in the observed final particle spectra → elliptic flow
- It's magnitude depends on the initial conditions, the EOS, and the system lifetime

- Fourier expansion of the angular spectra relative to the event-by-event reaction plane
- The second component v2 measures the shape of the reaction zone and depends strongly on p_T

 $N(\phi) \propto 1 + 2v_1 \cos(\phi) + 2v_2 \cos(2\phi) + 2v_3 \cos(3\phi) + \dots$

- 2 and multi-particle methods differ as expected
- multi-particle estimates agree within uncertainties as is expected for collective flow
- 30% increase of integrated v₂ from STAR ($\sqrt{s_{NN}} = 0.2 \text{ TeV}$) to ALICE ($\sqrt{s_{NN}} = 2.76 \text{ TeV}$)
 - Visible over all centralities
 - due to increased <p_T> (stronger radial flow at higher energies)
- Agreement with Hydro + viscous corrections

ALICE

PHOBOS D PHENIX

🕁 STAR

NA49

• E877

¥ EOS

A E895 **FOP**

10³

 $\sqrt{s_{NN}}$ (GeV)

CERES

Elliptic Flow results Centrality dependence

$$E\frac{d^{3}N}{d^{3}p} = \frac{1}{2\pi}\frac{d^{2}N}{p_{T}dp_{T}dy} \left(1 + \sum_{n=1}^{\infty} 2v_{n}\cos[n(\phi - \Psi_{R})]\right)$$

Flow of Identified Particles

- Strong radial flow (mass dependence of v₂)
- Quite good agreement with hydro predictions for π and K, not true for p in semi-central events (better in peripheral) C. Zampolli - ALICE ICTP, 23 September 2011, Trieste 50

- Analysis performed combining ITS+TPC+TOF PID information in p_T ranges [0.1, 3.0] → π [0.2, 2.0] → K [0.3, 3.0] → p
- Blast wave fit to extract yields and <p_T>

Spectra for different centralities

- Analysis performed combining ITS+TPC+TOF PID information in p_T ranges [0.1, 3.0] → π [0.2, 2.0] → K [0.3, 3.0] → p
- Blast wave fit to extract yields and <p_T>

Spectra for different centralities

Harder spectra at LHC Mean p_T increases with mass • Stronger radial flow? C. Zampolli - ALICE ICTP, 23 September 2011, Trieste 52

- Analysis performed combining ITS+TPC+TOF PID information in p_T ranges [0.1, 3.0] → π [0.2, 2.0] → K [0.3, 3.0] → p
- Blast wave fit to extract yields and <p_T>

Spectra for different centralities

Harder spectra at LHC Mean p_T increases with mass Stronger radial flow? C. Zampolli - ALICE ICTP, 23 September 2011, Trieste 53

Identified Particle Spectra ratios

As a function of p_T

 Particle-antiparticle productions very similar

■ μ_B ≈ 0

As a function of multiplicity

Comparison with RHIC

Irieste

Thermal Models

- All ratios containing strangeness on top of model expectations
 - Protons are an exception, below expectations → model tuned ad hoc with a T_{fo} = 148

Same for THERMUS S. Wheaton, J. Cleymans and M. Hauer, Comput. Phys. Commun. 180 (2009) 84-106

A. Andronic et al., PLB 673, 2009, 142

p_T Spectra of Charged Particles

- p_T spectra up to 50 GeV/c for different centrality classes
 - Up to 100 GeV/c with increased statistics
- Shape changes with centrality

$R_{AA}(p_{T}) = \frac{(1/N_{evt}^{AA})d^{2}N_{ch}^{AA}/d\eta dp_{T}}{\left\langle N_{coll} \right\rangle (1/N_{evt}^{pp})d^{2}N_{ch}^{pp}/d\eta dp_{T}}$

Comparison with RHIC

- p_T ~ 1 GeV/c: similar value
- Low-intermediate p_T: shape and maximum position (at 2 GeV/c) similar
- High p_T (6-7 GeV/c): ALICE R_{AA} smaller than at RHIC → more energy loss, denser medium

 $R_{AA}(p_{T}) = \frac{(1/N_{evt}^{AA})d^{2}N_{ch}^{AA}/d\eta dp_{T}}{\left\langle N_{coll} \right\rangle (1/N_{evt}^{pp})d^{2}N_{ch}^{pp}/d\eta dp_{T}}$

R_{AA} as a function of centrality

- Different suppression pattern vs centrality
- Minimum at ~ the same p_T
- Leveling at ~30 GeV/c in central collisions

 $R_{AA}(p_{T}) = \frac{(1/N_{evt}^{AA})d^{2}N_{ch}^{AA}/d\eta dp_{T}}{\langle N_{coll} \rangle (1/N_{evt}^{pp})d^{2}N_{ch}^{pp}/d\eta dp_{T}}$

R_{AA} as a function of centrality

Comparison to models

Models tuned to RHIC

- Different suppression pattern vs centrality
- Minimum at ~ the same p_T
- Leveling at ~30 GeV/c in central collisions

40

50

p_ (GeV/c)

 $R_{AA}(p_{T}) = \frac{(1/N_{evt}^{AA})d^{2}N_{ch}^{AA}/d\eta dp_{T}}{\langle N_{coll} \rangle (1/N_{evt}^{pp})d^{2}N_{ch}^{pp}/d\eta dp_{T}}$

Charged and neutral pions

 Good agreement between charged and neutral π

Open Heavy Flavor

- R_{AA} of open charm
 - Study energy loss mechanism (dead cone + Casmir effect):

 $\Delta E_{g} > \Delta E_{uds} > \Delta E_{c} > \Delta E_{b} \rightarrow R_{AA}^{\pi} < R_{AA}^{D} < R_{AA}^{B}$

- Reference from scaled 7 TeV spectra
- Suppression ~5x at high p_T (~4 times larger in central events than in peripheral)

c→e from Do measurement + decay kine
Way to compare charm and beauty
suppression @ midrapidity

Quarkonia

R_{AA} as a function of centrality

Comparison to RHIC

- Very little (almost no) dependence on centrality
- Comparison with model started

 Less suppression than at RHIC in most central events

Triggered Di-Hadron Correlations

- To further study the energy loss mechanism and to determine the p_T region where collective effects/jet-like correlations dominates
- Choose a particle from one p_T region ("trigger particle") and correlate with particles from another p_T region ("associated particles") where p_{T,assoc} < p_{T,trig} in bins of p_{T,trig} and p_{T,assoc}
- Define:

Per-trigger yield

$$Y(\Delta \phi) = \frac{1}{N_{trig}} \frac{dN_{assoc}}{d\Delta \phi}$$

Correlation function

$$C(\Delta \varphi, \Delta \eta) = \left(\frac{1}{N_{\text{pair}}} \frac{d^2 N_{\text{assoc}}}{d\Delta \varphi d\Delta \eta}\right)_{\text{same}} / \left(\frac{1}{N_{\text{pair}}} \frac{d^2 N_{\text{assoc}}}{d\Delta \varphi d\Delta \eta}\right)_{\text{mixed}}$$

- Extract near and away-side jet yields from per-trigger yields
 - Compare Pb-Pb and pp $\rightarrow I_{AA}$
 - Compare central and peripheral collisions $\rightarrow I_{CP}$
- Analysis strategy: characterize the structures in the long-range correlation region with a Fourier decomposition

Triggered Di-Hadron Correlations

- Measurement in a region where collective effects are small
 - p_{T, trig} > 8 GeV/c
- Uncorrelated and v₂ background subtracted
- Comparison to models studied
- Caveat: same trigger p_T probes different parton p_T at different $\sqrt{s_{NN}}$
- STAR and PHENIX subtract v₂ → compare with ALICE line
 - STAR I_{AA} w.r.t. to dAu reference
 - STAR has different centrality for peripheral events
 - Away side larger than at STAR
 - PHENIX has (slightly) different p_{T,trig} ranges
- No evidence for near-side I_{AA} > 1 at RHIC, but not excluded
- ALICE I_{CP} in agreement with I_{AA} (near-side enhancement + away-side suppresison)

Comparison to RHIC

Triggered Di-Hadron Correlations

Fourier coefficients

- Strong near-side ridge + double peak at away side
- 5 harmonics look enough to describe the correlation well

- Away-side peak dominates
- Higher harmonics improve the description of the correlations

The flow factorization (not shown here) demonstrates that up to $_{3-4}$ GeV/c collectivity dominates, while at larger p_T jet-like correlations take over

...and much more...

- Higher harmonics in flow analysis
- Jets
- Hyperons
- Strangeness
- ...

Summary and Conclusions

- The ALICE experiment has shown an excellent performance during pp and PbPb data taking, some highlights presented here
 - Many results already published and many analyses well ongoing
- pp collisions have shown challenging results for MC tuning...
- ...and have allowed to start studying the medium created in PbPb collisions
- Wrt RHIC, ALICE has shown:
 - Similar dependence of multiplicity on centrality
 - An increased (by 30%) v₂ (mainly due to higher p_T)
 - Harder spectra (stronger radial flow?)
 - Stronger R_{AA}
 - Smaller J/ψ suppression
- Much more has been found not shown here...

Stay tuned, we're just at the doors of Wonderland

An Appropriate Citation

"so many out-of-the-way things had happened lately, that Alice had begun to think that very few things indeed were really impossible." L. Carrol, Alice's Adventures In Wonderland