

2263-37

Beyond the Standard Model: Results with the 7 TeV LHC Collision Data

19 - 23 September 2011

Flavour and Vacuum Stability Constraints in G2-MSSM models

Lilliana Velaso-Sevilla Cinvestav-IPN Mexico FLAVOUR AND VACUUM STABILITY CONSTRAINTS IN G2-MSSM MODELS

> K. KADOTA, G. KANE, J. KERSTEN & L. V-S (CINVESTAV-MEXICO) arXiv:1107.3105

> > BSM @ 7 TEV LHC ICTP 09/23/2011

PROGRAMME

- Overview of G2-MSSM models
- How can Flavour arise?
- Constraints from Vacuum Stability
- Constraints from Flavour & CP violation
- Could there be Signals at the LHC?
- Summary

OVERVIEW OF G2-MSSM MODELS

- Dynamics of the Hidden Sector
 - Generates the hierarchy between MPlanck and MEW
 - Supersymmetry breaking also stabilize the moduli, with M $\sim m_{3/2}$ \gtrsim 20 TeV
- The cosmological moduli solutions are based on:
 - Non-thermal, moduli dominated, pre BBN cosmology is very plausibly "a generic" outcome of string/M theory
 - A non-thermal WIMP miracle occurs for wine-like Dark Matter particles produced when the moduli decay before BBN
 - Wino DM consistent with indirect detection (PAMELA, Fermi)

• Spectra

• m $\sim m_{3/2}$ • m $\sim O(|\text{TeV})$

- despite heavy scalars, there is a light Higgs → EWSB achieved
- while FCNC under control,

BOUNDS ON Y, AND SOFT TERMS CAN BE OBTAINED

In the effective supergravity limit of G2-MSSM models we know, the Kähler potential:

$$K = \tilde{K}_{F_i^{\dagger}F_j} F_i^{\dagger}F_j + \tilde{K}_{f_i^c f_j^{c\dagger}} f_i^c f_j^{c\dagger} + \tilde{K}_{H_f^{\dagger}H_f} H_f^{\dagger} H_f + K_{\mathrm{H}}$$

FIXED BY MODULI STABILIZATION CONDITIONS

In the effective supergravity limit of G2-MSSM models we know, the Kähler potential:

$$K = \tilde{K}_{F_i^{\dagger}F_j} F_i^{\dagger}F_j + \tilde{K}_{f_i^c f_j^{c\dagger}} f_i^c f_j^{c\dagger} + \tilde{K}_{H_f^{\dagger}H_f} H_f^{\dagger} H_f + K_{\mathrm{H}}$$

In the effective supergravity limit of G2-MSSM models we know, the Kähler potential:

$$K = \tilde{K}_{F_i^{\dagger}F_j} F_i^{\dagger}F_j + \tilde{K}_{f_i^c f_j^{c\dagger}} f_i^c f_j^{c\dagger} + \tilde{K}_{H_f^{\dagger}H_f} H_f^{\dagger} H_f + K_{\mathrm{H}}$$

MATTER KAHLER, NOT COMPLETELY EXPLORED

and the superpotential:

$$W = Y_l^{ij} \epsilon_{\alpha\beta} H_d^{\alpha} E_i^c L_j^{\beta} - Y_{\nu}^{ij} \epsilon_{\alpha\beta} H_u^{\alpha} N_i^c L_j^{\beta} + Y_d^{ij} \epsilon_{\alpha\beta} H_d^{\alpha} D_i^c Q_j^{\beta} - Y_u^{ij} \epsilon_{\alpha\beta} H_u^{\alpha} U_i^c Q_j^{\beta} + \mu \epsilon_{\alpha\beta} H_u^{\alpha} H_d^{\beta} + \frac{1}{2} M_{\nu}^{ij} N_i^c N_j^c ,$$

... up to Yukawa couplings, but this is even a problem in SM.

Related to the well known problem of the underdetermination of Y matrices, despite that Vckm & mass eigenvalues are known

$$\mathcal{L} = -Y_{ij}^{u} \overline{Q} H u_j - Y_{ij}^{d} \overline{Q}_i (i \sigma_2)^* H d_j + h.c., \qquad Y?$$

• In ST, the Yukawa couplings are given generically by $Y_{ij}^f = e^{-V_{ij}}$

• Where

 V_{ij} are parameters related to the moduli of the internal space of the theory

In ST it has been considered that it is just a matter of computation.... while this is done we can constrain the size by phenomenological observations

Kähler metric for matter not fully explored $\Leftrightarrow V_{ij}$ can be phenomenologically constrained (e.g. FCNC)

Once $K_{\rm H}$ and V_{ij} are specified, all mass squared masses and trilinear terms can be computed

$$\begin{split} m_{\bar{\alpha}\beta}^{\prime 2} &= \widehat{m_{3/2}^{2} \langle \tilde{K}_{\bar{\alpha}\beta} \rangle} - \left\langle \mathcal{F}^{*\bar{m}} \left(\partial_{\bar{m}}^{*} \partial_{n} \tilde{K}_{\bar{\alpha}\beta} - (\partial_{\bar{m}}^{*} \tilde{K}_{\bar{\alpha}\gamma}) \tilde{K}^{\gamma\bar{\delta}} \partial_{n} \tilde{K}_{\bar{\delta}\beta} \right) \mathcal{F}^{n} \right\rangle, \\ a_{\alpha\beta\gamma}^{\prime} &= \underbrace{\left\langle \mathcal{F}^{m} \right\rangle \left[\left\langle \frac{\partial_{m} K_{\mathrm{H}}}{M_{\mathrm{P}}^{2}} \right\rangle Y_{\alpha\beta\gamma}^{\prime} + \frac{\mathcal{N} \partial Y_{\alpha\beta\gamma}}{\partial \langle h_{m} \rangle} \right] \\ &- \left\langle \mathcal{F}^{m} \right\rangle \left[\left\langle \tilde{K}^{\delta\bar{\rho}} \left(\partial_{m} \tilde{K}_{\bar{\rho}\alpha} \right) \right\rangle Y_{\delta\beta\gamma}^{\prime} + (\alpha \leftrightarrow \beta) + (\alpha \leftrightarrow \gamma) \right], \\ F \to \hat{F} \equiv V_{F}^{-1} F \quad , \quad f^{c} \to \hat{f}^{c} \equiv f^{c} V_{f^{c}}^{-1\dagger} \quad , \quad H_{f} \to \hat{H}_{f} \equiv \tilde{K}_{H_{f}^{\dagger}H_{f}}^{\frac{1}{2}} H_{f} , \\ V_{F}^{\dagger} \tilde{K}_{F^{\dagger}F} V_{F} = \mathbb{1} \quad , \quad V_{f^{c}}^{\dagger} \tilde{K}_{f^{c}f^{c}\dagger} V_{f^{c}} = \mathbb{1} \end{split}$$

MFV AT MPLANCK

CLICDA

$$\begin{array}{ccc} m_0^2 & 1 \\ 2 & 1 \end{array} \qquad (a^f)_{ij} = A^f Y_{ij}^f$$

 $m_{\tilde{f}^{c}\tilde{f}^{c}\dagger}^{\prime 2} = m_{0}^{2} \mathbb{1}$ $m_{\tilde{f}^{c}\tilde{f}^{c}\dagger}^{\prime 2} = m_{0}^{2} \mathbb{1}$ TR

TRILINEAR COUPLINGS PROPORTIONAL TO YUKAWA COUPLINGS

$$\begin{split} m_{\bar{\alpha}\beta}^{\prime 2} &= m_{3/2}^2 \langle \tilde{K}_{\bar{\alpha}\beta} \rangle - \left(\mathcal{F}^{*\bar{m}} \left(\partial_{\bar{m}}^* \partial_n \tilde{K}_{\bar{\alpha}\beta} - (\partial_{\bar{m}}^* \tilde{K}_{\bar{\alpha}\gamma}) \tilde{K}^{\gamma\bar{\delta}} \partial_n \tilde{K}_{\bar{\delta}\beta} \right) \mathcal{F}^n \right), \\ a_{\alpha\beta\gamma}^{\prime} &= \langle \mathcal{F}^m \rangle \left[\left\langle \frac{\partial_m K_{\mathrm{H}}}{M_{\mathrm{P}}^2} \right\rangle Y_{\alpha\beta\gamma}^{\prime} + \frac{\mathcal{N} \partial Y_{\alpha\beta\gamma}}{\partial \langle h_m \rangle} \right] \\ &- \langle \mathcal{F}^m \rangle \left[\left\langle \tilde{K}^{\delta\bar{\rho}} \left(\partial_m \tilde{K}_{\bar{\rho}\alpha} \right) \right\rangle Y_{\delta\beta\gamma}^{\prime} + (\alpha \leftrightarrow \beta) + (\alpha \leftrightarrow \gamma) \right], \end{split}$$

$$\longrightarrow$$
 $\langle \mathcal{F}^m \rangle$

DEPEND NON TRIVIALLY ON FLAVON FIELDS (SCALARS BREAKING THE FS) HENCE IN GENERAL

$$(a^f)_{ij} = c^f_{ij} A_{\tilde{f}} Y^f_{ij}$$

$$m_{\tilde{F}^{\dagger}\tilde{F}}^{\prime 2} \neq m_0^2 \mathbb{1}$$

$$m_{\tilde{f}^c\tilde{f}^{c\dagger}}^{\prime 2} \neq m_0^2 \mathbb{1}$$

TRILINEAR COUPLINGS & SQUARED MASS TERMS ARE NOT PROPORTIONAL TO YUKAWA COUPLINGS

> MFV LOST EVEN AT MPLANCK

IN G2-MSSM MODELS?

$$m_{\bar{\alpha}\beta}^{\prime 2} = m_{3/2}^{2} \langle \tilde{K}_{\bar{\alpha}\beta} \rangle - \left\langle \mathcal{F}^{*\bar{m}} \left(\partial_{\bar{m}}^{*} \partial_{n} \tilde{K}_{\bar{\alpha}\beta} - (\partial_{\bar{m}}^{*} \tilde{K}_{\bar{\alpha}\gamma}) \tilde{K}^{\gamma\bar{\delta}} \partial_{n} \tilde{K}_{\bar{\delta}\beta} \right) \mathcal{F}^{n} \right\rangle$$
$$a_{\alpha\beta\gamma}^{\prime} = \left\langle \mathcal{F}^{m} \right\rangle \left[\left\langle \frac{\partial_{m} K_{\mathrm{H}}}{M_{\mathrm{P}}^{2}} \right\rangle Y_{\alpha\beta\gamma}^{\prime} + \frac{\mathcal{N}\partial Y_{\alpha\beta\gamma}}{\partial \langle h_{m} \rangle} \right]$$
$$- \left\langle \mathcal{F}^{m} \right\rangle \left[\left\langle \tilde{K}^{\delta\bar{\rho}} \left(\partial_{m} \tilde{K}_{\bar{\rho}\alpha} \right) \right\rangle Y_{\delta\beta\gamma}^{\prime} + (\alpha \leftrightarrow \beta) + (\alpha \leftrightarrow \gamma) \right],$$

FIXED (MODULI STABILIZATION)

THE REST OF THE TERMS, REGARD **MATTER K** AND WHILE COMPATIBLE WITH MSUGRA, THERE MAY BE DEVIATIONS THAT ARE WORTH EXPLORING

IMPORTANT CONSTRAINTS: NO NEW CP PHASES APPEARING

STRATEGY: START PROBING WITH YUKAWA TEXTURES THAT ARE WELL KNOWN AND DEVIATIONS FROM MINIMALITY AT

MPLANCK

$$m_{\tilde{f}^{c}\tilde{f}^{c}\tilde{f}^{c}}^{\prime 2} = m_{0}^{2} \mathbb{1} \qquad (a^{f})_{ij} = c_{ij}^{f} A_{\tilde{f}} Y_{ij}^{f}$$
$$m_{\tilde{f}^{c}\tilde{f}^{c}\tilde{f}^{c}}^{\prime 2} = m_{0}^{2} \mathbb{1} \qquad \text{REAL}$$

CONSTRAINTS FROM VACUUM STABILITY

CONSTRAINTS FROM VACUUM STABILITY

Vacuum stability of the effective MSSM scalar potential When K_M trivial there is no problem (like msugra → just worry about Higgs scalar sector) ✓ Аснакуа & вовкоу, 0810.3285

When trilinears and mass squared terms not trivial, there are some extra-constaints

$$\begin{aligned} -\mathcal{L}_{\text{soft}} &= \tilde{q}_{Li}^{\dagger} (m_{\tilde{Q}}^{2})^{ij} \tilde{q}_{Lj} + \tilde{u}_{Rj} (m_{\tilde{u}}^{2})^{ji} \tilde{u}_{Ri}^{*} + \tilde{d}_{Rj} (m_{\tilde{d}}^{2})^{ji} \tilde{d}_{Ri}^{*} \\ &+ \tilde{l}_{Li}^{\dagger} (m_{\tilde{L}}^{2})^{ij} \tilde{l}_{Lj} + \tilde{e}_{Rj} (m_{\tilde{e}}^{2})^{ji} \tilde{e}_{Ri}^{*} + \tilde{\nu}_{Rj} (m_{\tilde{\nu}}^{2})^{ji} \tilde{\nu}_{Ri}^{*} \\ &+ m_{h_{d}}^{2} h_{d}^{\dagger} h_{d} + m_{h_{u}}^{2} h_{u}^{\dagger} h_{u} + (B\mu h_{d} h_{u} + \frac{1}{2} B_{\nu}^{ij} M_{\nu}^{ij} \tilde{\nu}_{Ri}^{*} \tilde{\nu}_{Rj}^{*} + \text{h.c.}) \\ &+ \left(-a_{d}^{ij} h_{d} \tilde{d}_{Ri}^{*} \tilde{q}_{Lj} + a_{u}^{ij} h_{u} \tilde{u}_{Ri}^{*} \tilde{q}_{Lj} - a_{l}^{ij} h_{d} \tilde{e}_{Ri}^{*} \tilde{l}_{Lj} + a_{\nu}^{ij} h_{u} \tilde{\nu}_{Ri}^{*} \tilde{l}_{Lj} \\ &+ \frac{1}{2} M_{1} \widetilde{B} \widetilde{B} + \frac{1}{2} M_{2} \widetilde{W}^{a} \widetilde{W}^{a} + \frac{1}{2} M_{3} \widetilde{G}^{a} \widetilde{G}^{a} + \text{h.c.} \right), \end{aligned}$$

 An undesiderable deep CCB minimum appears, unless

$$\begin{aligned} |\hat{a}_{ij}^{e}|^{2} &\leq ((\hat{Y}_{ii}^{e})^{2} + (\hat{Y}_{jj}^{e})^{2})(m_{\tilde{e}_{L_{i}}}^{2} + m_{\tilde{e}_{R_{j}}}^{2} + m_{H_{d}}^{2} + |\mu|^{2}), \\ |\hat{a}_{ij}^{d}|^{2} &\leq ((\hat{Y}_{ii}^{d})^{2} + (\hat{Y}_{jj}^{d})^{2})(m_{\tilde{d}_{L_{i}}}^{2} + m_{\tilde{d}_{R_{j}}}^{2} + m_{H_{d}}^{2} + |\mu|^{2}), \\ |\hat{a}_{ij}^{u}|^{2} &\leq ((\hat{Y}_{ii}^{u})^{2} + (\hat{Y}_{jj}^{u})^{2})(m_{\tilde{u}_{L_{i}}}^{2} + m_{\tilde{u}_{R_{j}}}^{2} + m_{H_{u}}^{2} + |\mu|^{2}). \end{aligned}$$

• UFB require $\begin{aligned} |\hat{a}_{ij}^{e}|^{2} &\leq ((\hat{Y}_{ii}^{e})^{2} + (\hat{Y}_{jj}^{e})^{2})(m_{\tilde{e}_{L_{i}}}^{2} + m_{\tilde{e}_{R_{j}}}^{2} + m_{\tilde{\nu}_{m}}^{2}), \\ |\hat{a}_{ij}^{d}|^{2} &\leq ((\hat{Y}_{ii}^{d})^{2} + (\hat{Y}_{jj}^{d})^{2})(m_{\tilde{d}_{L_{i}}}^{2} + m_{\tilde{d}_{R_{j}}}^{2} + m_{\tilde{\nu}_{m}}^{2}), \\ |\hat{a}_{ij}^{u}|^{2} &\leq ((\hat{Y}_{ii}^{u})^{2} + (\hat{Y}_{jj}^{u})^{2})(m_{\tilde{u}_{L_{i}}}^{2} + m_{\tilde{u}_{R_{j}}}^{2} + m_{\tilde{e}_{L_{p}}}^{2} + m_{\tilde{e}_{R_{q}}}^{2}) \end{aligned}$ CCB & UFB problems do not go away with heavy scalars

CONSTRAINTS FROM FLAVOUR & CPVIOLATION

CONSTRAINTS FROM FLAVOUR & CPVIOLATION

- FLAVOUR & CP PROBLEMS: Arbitrary values of masses and trilinear terms in supersymmetric breaking terms give arbitrary FCNC and can easily exceed CP bounds!
- With heavy scalars, is there a problem?
 - Strong constraints from Kaon mixing
 - Tachyonic particles?

ARKANI-HAMED & MURAYAMA, PRD D56, PH/9703259

GIUDICE, NARDECCHIA & ROMANINO, NPB 813, PH/0812.3610

I. FCNC: need to check signals in all these processes:

1. $\Delta F = 1$ processes

Kaon Mixing in the SM

Due to the unitarity of V O(I) contributions cancel (GIM mechanism),

$$\epsilon^{\text{SM}} = (1.91 \pm 0.30) \times 10^{-3},$$

 $|\epsilon|^{\text{exp}} = (2.228 \pm 0.011) \times 10^{-3}$

 $0 < \operatorname{Re}(\epsilon'/\epsilon)_{SM} < 3.3 \times 10^{-3}$

$$\operatorname{Re}\left(\frac{\epsilon'}{\epsilon}\right)_{exp} = (1.65 \pm 0.26) \times 10^{-3}$$

Very large hadronic uncertainties but in some SUSY models, contributions could be fairly large

Friday, September 23, 11

Strategy: Start probing with Yukawa textures that are well known and also deviations from minimality at MPlanck

Iextures:
$$Y^d = \frac{\sqrt{2}m_b}{v\cos\beta} 0.27 \begin{bmatrix} 0.0014 + 0.0007i & 0.0009 + 0.0111i & 0.13 + 0.13i \\ 0.0055 & 0.046 + 0.118i & 0.35 + 0.19i \\ 0.0018 - 0.0009i & 0.069 + 0.058i & -0.90 + 0.08i \end{bmatrix}$$
 $Y^u = \frac{\sqrt{2}m_t}{v\sin\beta} 0.53 \begin{bmatrix} -1.58 \times 10^{-6} - 0.000017i & -0.000076 + 0.000032i & 0.0020 + 0.0020i \\ -0.00034 + 0.00024i & 0.0020 + 0.0002i & 0.011 + 0.011i \\ -0.0057 - 0.0024i & 0.0044 + 0.0115i & 0.70 + 0.71i \end{bmatrix}$

$r_e = \frac{\sqrt{2}m_\tau}{m_\tau}$	0.0014 - 0.0007i	0.0005 - 0.0056i	0.13 - 0.13i
	0.0082	0.023 - 0.059i	0.18 - 0.1i
$v \cos \rho$	0.0018 + 0.0009i	0.035 - 0.029i	-0.99 - 0.09i

KANE, KING, PEDDIE & V-S, JHEP 0508, PH/0504038 These textures can be explained in the context of $SU(5)_{GUT} \times U(1)_{Family Symmetry}$ model Deviations: $(a^{f})_{ij} = c^{f}_{ij}A_{\tilde{f}}Y^{f}_{ij} \begin{bmatrix} (a) \ c^{f}_{ij} = 1, \\ (b) \ c^{f}_{ij} = x^{f}_{ij}, \ x^{f}_{ij} \in (0, \sqrt{2}) \text{ a random number} \end{bmatrix}$

Friday, September 23, 11

Y

G2-MSSM benchmark points: ACHARYA & BOBKOV, 0810.3285

Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7 parameter 30000 20000 20000 20000 20000 50000 30000 $m_{3/2}$ δ -15 -12 0 -1515-15 -15 0 0 0 0.10.50 0 c2.653 2.5 $\tan\beta$ 3 2.653 3 -10969 -10490 -34019 -11943 -13377-13537+17486 μ LSP type Wino Wino Bino Bino Wino Bino Bino M_1 165203 181 484 434 252173662 421 242 M_2 158173225189262297 423 328 1328 673 395 M_3 17844921001 596.8 401 449 622 $m_{\tilde{q}}$ 473373.4 271145.1155.6189170 $m_{\widetilde{\chi}_1^0}$ 214.3 181.5 702.4 397 334.2 153159 $m_{\widetilde{\chi}^0_2}$ 11905 13321 13479 10938 10486 33886 17441 $m_{\widetilde{\chi}^0_3}$ 13322 10939 10487 33886 1744211906 13479 $m_{\widetilde{\chi}^0_4}$ 334.2 181.7 702.6 373.6 145.2155.8214.5 $m_{\tilde{\chi}_1^{\pm}}$ 11970 13383 13540 11001 1056034044 17540 $m_{\tilde{\chi}_2^{\pm}}$

$m_{{ ilde d}_L}, m_{{ ilde s}_L}$	19799	19803	19809	18785	21052	49524	29727
$m_{ ilde{u}_L}, m_{ ilde{c}_L}$	19801	19812	19818	18784	21034	49600	29725
$m_{ ilde{b}_1}$	15342	15250	15224	14635	16783	38473	23236
$m_{ ilde{t}_1}$	9130	8779	8662	8928	11151	22887	14264
$m_{ ilde{e}_L}, m_{ ilde{\mu}_L}$	19948	19948	19951	18926	21164	49889	29930
$m_{\tilde{\nu}_{e_L}}, m_{\tilde{\nu}_{\mu_L}}$	19950	19954	19952	18927	21168	49903	29934
$m_{ ilde{ au}_1}$	19934	19941	19940	18914	21156	49874	29909
$m_{ ilde{ u}_{ au_L}}$	19936	19944	19942	18916	21158	49876	29913
$m_{\tilde{d}_B}$	19848	19851	19845	18832	21096	49694	29794
$m_{ ilde{u}_R}, m_{ ilde{c}_R}$	19850	19853	19858	18832	21094	49700	29792
$m_{ ilde{s}_R}$	19849	19851	19856	18832	21096	49695	29767
$m_{ ilde{b}_2}$	19829	19833	19838	18810	21075	49669	29758
$m_{\tilde{t}_2}$	15342	15251	15224	14635	16783	38470	23235
$m_{ ilde{e}_R}, m_{ ilde{\mu}_R}$	19978	19977	19977	18953	21196	49948	29966
$m_{ ilde{ au}_2}$	19948	19957	19955	18930	21174	49904	29928
m_{h_0}	116.4	114.3	114.6	116.0	115.9	115.1	114.6
$m_{H_0}, m_{A_0}, m_{H^\pm}$	24614	25846	25943	23158	25029	65690	36623
$ ilde{A}_t$	12159	11539	11445	10898	9626	30139	18812
$ ilde{A}_b$	27381	27321	27427	24744	21850	68441	41148
$ ilde{A}_{ au}$	30068	30092	30124	27109	23022	75221	45099

Friday, September 23, 11

$$\operatorname{Re}\left(\frac{\epsilon'}{\epsilon}\right) \sim 10^{-8}$$

Really safe (mainly due to boundary conditions) $m'_{\tilde{F}^{\dagger}\tilde{F}}^{2} = m_{0}^{2} 1$ $m'_{\tilde{f}^{c}\tilde{f}^{c\dagger}}^{2} = m_{0}^{2} 1$

Tachyonic particles here are not an issue All other bounds really safe!

How important are the absence of new phases?

COULD THERE BE SIGNALS AT THE LHC?

COULD THERE BE SIGNALS AT THE LHC?

 In general of G2-MSSM: Sure! (Gordy Kane talk) special signatures of low gluinos with heavy scalars

FÉLDMAN, KANE, LU & NELSON, 1002.2430 KANE, KUFLIK, LU & WANG, 1101.1963

 In particular regarding Yukawa & other flavour couplings: difficult but not impossible due to the involved couplings in the typical decay chains

SUMMARY

- Typical flavour structure in G2-models:
 - Couplings:
 - Squared mass matrices
- Vij can be constrained

$$m_{\tilde{f}^{c}\tilde{f}^{c}}^{\prime 2} = m_{0}^{2} \parallel \qquad (a^{f})_{ij} = c_{ij}^{f} + m_{0}^{2} \parallel \qquad (a^{f})_{ij} = c_{ij}^{f} +$$

 $a^f)_{ij} = c^f_{ij} A_{\tilde{f}} Y^f_{ij}$

LIMIT OF WHAT

IT COULD BE!

REAL

 $Y_{ii}^f = e^{-V_{ij}}$

 FCNC under control with specific forms of Yukawa couplings, Yu small mixings, while Yd can allow certain large mixings

$$Y^{d} = \frac{\sqrt{2}m_{b}}{v\cos\beta} 0.27 \begin{bmatrix} 0.0014 + 0.0007i & 0.0009 + 0.0111i & 0.13 + 0.13i \\ 0.0055 & 0.046 + 0.118i \\ 0.0018 - 0.0009i & 0.069 + 0.058i \end{bmatrix} \begin{pmatrix} 0.13 + 0.13i \\ 0.35 + 0.19i \\ -0.90 + 0.08i \end{bmatrix}$$