

2263-1

Beyond the Standard Model: Results with the 7 TeV LHC Collision Data

19 - 23 September 2011

Search for Dijet Resonances at CMS

Maxime Gouzevitch CERN Switzerland

0) Where do we stand

CMS detector have collected 3 fb⁻¹ @ 7 TeV (1 fb⁻¹ in July).

- Dijet final state provide a "simple" and robust handle to new physics at high mass O(TeV).
- 2. CMS detector perfectly adapted for high p_T jets ~ O(0.1 TeV) physics.
- 3. Search for Contact Interactions (CI).
- 4. Generic Search for Narrow Resonances.

1) What are we looking for

- Search for Heavy Resonances (M_X ~ O(TeV)) : qq (Z', W', Axigluon), qg (Q*), gg (RS Graviton).
- Search for Contact Interactions.
- Sensitive mainly to strongly coupling interactions due to the large QCD cross section:
 - Very robust channel not affected by any EW background \rightarrow first EXOTICA analysis published when new data comes.
 - Large background.
 - Quickly rising trigger thresholds

- $|\eta_{iet}| < 2.5$: Low Resonance and CI; Large QCD.
- Corresponds to the tracker acceptance: best resolution and jet id.
- $|\Delta \eta_{12}| < \Delta \eta_{max}$: Low Resonances and CI; Large QCD.

 $M_{12} > M_{min}$: Bump – Resonance; Excess at Large Mass – Cl. 3. $\rm M_{min}$ depend on the trigger turn on curve. Instantaneous luminosity * $\rm I0 \rightarrow \rm M_{12,\,min}$ * $\rm 1.5$

19/09/2011

M. Gouzevitch. Beyond Standard Model, ICTP, Triesta

3) Jets reconstruction: Performances

- Particle Flow approach brings Reco jets close to Gen jets.
- Give access to jets with $p_T > 10$ GeV.
- Keep the JER better than 15%: JER uncertainty 10%.
- Jet energy scale: JES uncertainty 2.2%.

4.1) Search for Contact Interactions

- A non-renormalizable dimensional coupling g.
- Suppressed by a large scale Λ reflecting the physics at a new scale.

 $L_{qq} = \frac{g^2}{2\Lambda^2} \left[\eta_{LL}(\overline{q}_L \gamma^\mu q_L) (\overline{q}_L \gamma_\mu q_L) + \eta_{RR}(\overline{q}_R \gamma^\mu q_R) (\overline{q}_R \gamma_\mu q_R) + 2\eta_{RL}(\overline{q}_R \gamma^\mu q_R) (\overline{q}_L \gamma_\mu q_L) \right]$

- CI expected at low $\Delta \eta_{12}$ and large M_{12} .
- QCD at large $\Delta \eta_{12}$ and low M_{12} .

M. Gouzevitch. Beyond Standard Model, ICIT, ITIEsta

4.2) Search for Contact Interactions

- Cancellation of systematic unc. In the Ratio:
 - Total exp. unc. (JER, JES): 3-5% 0
 - Total theory unc. (NLO, PDF, Model): 2-7% 0
- No excess observed.
- We use Bayesian formalism to establish exclusion limits. Bkg. Hypothesis shape from NLO calculations or PYTHIA. Normalization factor taken from data at low mass: M_{12} < 790 GeV.

19/09/2011

5.1) Search for heavy resonances

- "Generic" search for narrow heavy resonances O(I-I0GeV).
- Reconstructed mass shape is initially a B-W. Deformed by:
 - Partons luminosity (low mass tail).
 - Loss of Final State Radiation: low mass tail, central gaussian.
 - Catch Initial State radiation: large mass tail, central gaussian.
 - Experimental resolution: central gaussian.

5.2) Search for heavy resonances: Wide jets

Fat Jets algorithm

- Select 2 leading AK5 PF jets.
- For AK5 PF jets j from 3 to n:

• Require:

- p_{T,j} > 10 GeV
- |η|[~]< 2.5
- If $\Delta R_{jl} < R_{Fat}$ and ΔR_{2j} .
 - Add j to Fat Jet I.
- If $\Delta R_{j2} < R_{Fat}$ and ΔR_{Ij} .
 - Add j to Fat Jet 2.

19/09/2011

5.5) Search for heavy resonances: Results

- No significant excess observed.
- We use Bayesian formalism to establish exclusion limits with $CL_{95\%}$.
- Benchmark models written as function of qq, qg, gg final state.
- Exclude strongly coupled benchmark models below 2.5 TeV.
- First EW coupled model:W' excluded below 1.5 TeV.

Model	Excluded Mass (TeV)	
inouci	Observed	Expected
String Resonances	4.00	3.90
E ₆ Diquarks	3.52	3.28
Excited Quarks	2.49	2.68
Axigluons/Colorons	2.47	2.66
W' Bosons	1.51	1.40

We sail in the unknown land

- With the Dijet observable we are in the bulk of the unknown ocean of the TeV physics.
- We exclude above 2.5 TeV many strongly coupling models.
- The Contact Interactions are excluded above 4 TeV.
- W' model with the SM couplings is the first EW "victime" of the Dijet search.
- Need alternative strategies to stay sensitive to Z', RS Gravitons: kill QCD bkg, specific triggers.
- Santa Maria is sailing in the ocean, no land on the horizon.

But we believe that we can reach India!!!

1) Spectrum formula

 $M_{12} \sim 2p_T (1 + \Delta \eta^2 / 8)$

19/09/2011

0) Sail direction

- Counting experiments:
 - Raw Generic searches.
- Resonances search:
 - Few assumptions about mass shapes.
- Exclusive searches:
 - Rely on topological details.
- Try to use when possible the in-situ background measurement background. Otherwise rely on MC.

LHC strategy in 2010:

Parton Lumi > Lumi(Tvt)/Lumi(LHC) - for all quark, gluon initial state @ 0.6 TeV. - for quark – antiquark initial stat @ 1.2 TeV