

2263-10

Beyond the Standard Model: Results with the 7 TeV LHC Collision Data

19 - 23 September 2011

Search for Dilepton Resonances at CMS

Arnaud Gay IIHE-ULB Belgium

Search for Dilepton Resonances in CMS

> Arnaud Gay for The CMS collaboration

BSM: Beyond the Standard Model: results with the 7 TeV LHC Collision Data, 19-23 Sep 2011, ICTP, Trieste

- LHC and CMS
- Electron, muon ID and jet background (common to the 2 analyses presented here)
- Search for heavy dilepton resonances (1.1/fb of 2011 data)
- Search for excited leptons (36/pb of 2010 data)
- Conclusion

- (Re)Started in Oct 2009 (900 GeV then 2.38 TeV)
- On 30 March 2010, switched to 7 TeV
- 2.7/fb delivered at 7 TeV (as of early September 2011)
- Has already delivered much more than expected for 2011

• Expect to double the integrated luminosity at the end of this year (end of pp run on 30 october)

- Fine-grained ECAL. $\Delta E/E < 0.5\%$ for E > 100 GeV
- Inner tracker in 3.8 T magnetic field, plus muon system for triggering, id, and to improve high-pT measurement. ΔpT/pT<10% at pT~1 TeV.
- \rightarrow Muon id much easier than electron id, but m_{ee} resolution much better than m_{µµ}

Arnaud Gay

BSM Trieste 2011

- Both analyses use official CMS high energy electron and muon ID
 - Selection optimized for high efficiency at high energy
 - Lowest E_{T} unprescaled diphoton and single-muon trigger
 - Offline $\mathsf{E}_{\mathsf{T}}\mathsf{cut}$ above trigger turn-on:
 - Electron: E_T > 25 GeV (2010), E_T > 35-40 GeV (2011)
 - Muon: $E_T > 20 \text{ GeV}$ (2010), $E_T > 35 \text{ GeV}$ (2011)
 - Energy scale correction applied (important for endcap electrons)
 - ID and trigger efficiencies measured with the tag-and-probe method
 - Scale factor to account for data-MC efficiency difference applied

- A jet can fake an electron, a muon or a photon
- Measure this contamination with « Fake Rate » method
 - Measure probability for a jet reconstructed as a lepton/photon (with loosened cuts) to pass rest of selection.
 - Apply to get mass spectrum from jets and compare to MC
 - Different methods/jet trigger thresholds give systematic uncertainty.

Search for heavy dilepton resonances

Introduction

- New gauge bosons Z' or Randall-Sundrum gravitons G_{KK}
 - new narrow high-mass resonances.
- Generic shape-based search:
 - no assumptions on absolute background rate.
- Results normalized to the Z⁰ peak:
 - luminosity uncertainty and other systematic effects cancel or are reduced.
- Dielectron and dimuon channels are actually quite different:
 - muon selection looser (less background from jets)

- dielectron acceptance smaller (endcap-endcap pairs rejected and gap between barrel and endcap)

- requirement on charges only for muons

- cosmic rays useful to understand high pt muons and test special algorithms (and are also a source of bakground)

Dilepton background

- Dominant: irreducible Drell-Yan (DY) production
 - use DY shape from simulation in search.
- Next biggest (10% of DY above 120 GeV): ttbar and other sources of prompt leptons
 - check in data using $\ll e\mu$ method \gg (see next slide).
- Dileptons from misidentified jets:
 - Use « fake rate » method (see slide 6)
 - For dimuons, negligible (<1% of DY rate above 120 GeV)
 - More important for dielectrons : about 5% of the DY rate above 120 GeV.
- Cosmic-ray muons:
 - using sidebands, estimate less than 0.1 remaining dimuon event above 120 GeV.

emu method

- Expect two eµ events for every ee or µµ event, then scale by different e,µ efficiencies.
- Extract scale factor N(ee,μμ)/ N(eμ) from MC in bins of dilepton mass.
- Currently just a cross-check but good agreement between data and MC.

Dielectron mass spectrum

MC distributions normalized to NLO cross sections, then overall to the data at Z peak in 60-120 GeV.

Uncertainties in table: statistical \oplus systematic.

Source	Number of events	
	(120 - 200) GeV	>200 GeV
CMS data	3410	809
Total background	3375 ± 161	787 ± 67
Z/γ^*	2992 ± 149	622 ± 62
$t\bar{t}$ + other prompt leptons	275 ± 41	118 ± 17
Multi-jet events	107 ± 43	46 ± 18

Dimuon mass spectrum

MC distributions normalized to NLO cross sections, then overall to the data at Z peak in 60-120 GeV.

Uncertainties in table: statistical \oplus systematic.

Source	Number of events	
	(120 – 200) GeV	>200 GeV
CMS data	5216	1095
Total background	5537 ± 250	1100 ± 48
Z/γ^*	5131 ± 246	922 ± 44
$t\bar{t}$ + other prompt leptons	404 ± 46	178 ± 20
Multi-jet events	3 ± 3	0

Arnaud Gay

Resonance search

- Simple signal and background pdf, with shape parameters from MC.
- Use likelihood ratio to calculate uncorrected significance S_L as a function of mass M.
- Correct for Look Elsewhere Effect

$$\mathcal{L} \sim \prod_{i} f_{\text{signal}} + f_{\text{background}}$$
$$f_{\text{signal}} \sim \text{Breit-Wigner}(m|M,\Gamma)$$
$$\otimes \text{Gaussian}(m|M,w)$$
$$f_{\text{background}} \sim \exp(-am)/m^{b}$$

$$S_L = \sqrt{2\ln\frac{L_{S+B}^{\max}(f_s)}{L_B}}$$

Channel	Most significant bump mass	Local Ζ(σ)	LEE-corrected Z(σ)
ee	950 GeV	2.1	0.2
μμ	1080 GeV	1.8	0.3
ee+µµ combined	970 GeV	2.1	0.2

• Limits (95% CL) on ratio of cross sections times branching fractions (R_{σ}) using a Bayesian method

channel	μμ	ee	µµ + ее
Z' _{SSM}	1780 GeV	1730 GeV	1940 GeV
Ζ'ψ	1440 GeV	1440 GeV	1620 GeV
<i>G</i> _{KK} , c=0.05	1240 GeV	1300 GeV	1450 GeV
<i>G</i> _{KK} , c=0.1	1640 GeV	1590 GeV	1780 GeV

Search for excited leptons

Introduction

- The Standard Model's lepton mass hierarchy can be explained by the existence of lepton substructure
 - Leptons made up of bound states of 3 fermions or a fermion and a boson that can be excited and then decay to ordinary leptons
- Here, search for the production of an excited lepton (e^*/μ^*) in association with a SM lepton via novel contact interactions (scale determined by parameter Λ)
- The excited lepton then decays via the electroweak interactions resulting in a final state of two high E_T leptons (ee or $\mu\mu$) and one high E_T photon
- The decay width for other decay modes taken into account: BR(I* \rightarrow I+photon)=25% for low M*/ \wedge
- Two theory parameters: A and excited lepton mass (M*)

- Background:
 - Z $\gamma \rightarrow$ I+I+ $\gamma:$ Estimated from simulation.
 - Fake γ : dominated by Z + jets : Use Photon fake rate
 - Fake I: dominated by Wy + jets: Use lepton fake rate
 - $Z \rightarrow \tau \tau$, ttbar, WW, WZ, ZZ, W \rightarrow lv, diphoton (e*) taken into account.
- Event Selection
 - Require two muons/electrons. Require one photon with E_T 20 GeV in ECAL barrel ($|\eta| < 1.4$), with ΔR to the nearest lepton above 0.5
 - Require M(II)>60 GeV (eliminates low-mass Drell-Yan).
 - Lower mass cut (value depends on M* hypothesis) made on the maximum ly invariant mass
- No signal candidates observed in data.
- Perform a counting experiment and set 95% CL limits using the standard Bayesian method.

- Both LHC and CMS are performing very well
- Dilepton resonances are a good handle to new physics.
- Here, search for excited leptons, Z' and Randall sundrum gravitons $G_{\rm KK}$
 - there is also a Z' to TT search: M > 468 GeV
 @ 95% C.L. (assuming SM-like couplings, with 36/pb)
- No significant excess so far, everything agrees with SM
- A lot more data to be accumulated this and next year.

BACKUP SLIDES

Arnaud Gay

- 3% (8%) on the acceptance times efficiency ratio evolution from low to high mass for dimuons (dielectrons), which includes PDF uncertainties (relevant to the acceptance) and the mass dependence of K-factors.
- For dimuons, sensitivity study to mass scale uncertainty (affecting only the region below 1250 GeV where there are events) showed negligible impact up to the maximum possible from alignment effects; for dielectrons, study at Z0 peak results in 1% for barrel and 3% for endcap.
- For dimuons, effect of possible x2-invariant "weak mode" in alignment, which corresponds to a muon tracking curvature bias, folded into estimate of Gaussian width for signal pdf.
- Shape systematics explored:
 - include an extra background shape representing the ttbar component and varying its amplitude;
 - trying a different functional form for the background pdf;
 - and changing the low-mass cut-off point for the DY shape fit from 200 GeV down to 150 GeV, which changes the background shape parameters.

$$\mathcal{L}(\boldsymbol{m}|R_{\sigma}, \boldsymbol{M}, \boldsymbol{\Gamma}, \boldsymbol{w}, \boldsymbol{\alpha}, \boldsymbol{\kappa}, \boldsymbol{\mu}_{\mathrm{B}}) = \frac{\mu^{N} e^{-\mu}}{N!} \prod_{i=1}^{N} \left(\frac{\mu_{\mathrm{S}}(R_{\sigma})}{\mu} f_{\mathrm{S}}(\boldsymbol{m}_{i}|\boldsymbol{M}, \boldsymbol{\Gamma}, \boldsymbol{w}) + \frac{\mu_{\mathrm{B}}}{\mu} f_{\mathrm{B}}(\boldsymbol{m}_{i}|\boldsymbol{\alpha}, \boldsymbol{\kappa}) \right)$$

with:

- m_i = observed mass spectrum;
- $f_{s}(m_i|M,\Gamma,w) = \text{signal pdf}$, Breit-Wigner of width Γ and mass M, convoluted with Gaussian with width w;
- $f_{\rm B}(m_i|\alpha,\kappa) \sim \exp(-\alpha m)m^{-\kappa} =$ background pdf;
- *R*_σ = ^{σ(pp → Z' + X → ℓℓ + X)}/_{σ(pp → Z + X → ℓℓ + X)} = the cross section ratio, which goes into the likelihood function as part of the signal Poisson mean μ_S = *R*_σ · μ_Z · *R*_ε, where μ_Z is the Poisson mean number of Z^o → ee or μμ events, and *R*_ε is the ratio or total efficiency for Z' and Z^o decays;
- μ_B is the Poisson mean of the total background yield, $\mu = \mu_S + \mu_B$, and N is the total number of events with mass above 600 GeV.

Limits in individual channels

Photon ID Variable	Cut Threshold
$ \eta $	< 1.4442
E_{T}	> 20. GeV/c
H/E	< 0.05
Tracker Isolation	$< 2.0 + 0.001 * E_T$
ECAL Isolation	$< 4.2 + 0.006 * E_T$
HCAL Isolation	$< 2.2 + 0.0025 * E_T$
$\sigma_{i\eta i\eta}$	0.013
hasPixelSeed	No Requirement

- Tight ID
- Only ECAL barrel photons
- Data/MC scale factor applied to account for the difference between data and MC: 0.967 ± 0.025

Excited leptons systematics

Source	Magnitude	Error on signal efficiency (%)	Error on bkgd. expectation (%)
Luminosity	11%		8.5
Photon Fake Rate	46%	-	10
Muon Fake Rate	50%	-	6.2
Ecal Energy Scale	1.3%	0.1	0.4
Photon ID	0.025	2.6	1.9
Muon ID	0.01	2.1	1.6
PDF and scales	-	0.8	3