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“... and a lot of Astrophysics is 
messy.” Mark Wyman

• Evading Solar System Bounds : Screening 
Mechanisms

• “Real” Astrophysical Probes : spectra/structure 
of galaxies, stars, HI regions.

• Stellar structure and modified Gravity

• Simulating stellar evolution in the presence of 
modified gravity
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New Exotic Matter or New Gravity?

General Relativity is very strongly constrained on solar 
system scales. 
Large Scales (GR Broken?)

CMB, 
Large Scale Structure,
Supernova Type Ia

Solar System Scales (GR OK)

Mercury Precession,
Torsion Tests, lensing by sun,
Spacecraft trajectories
lunar ranging etc.

vs
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“Screening” Mechanisms
Loophole : change gravity at large scales, but keep 
gravity “the same” at small scales

Screening : suppress the effects of the extra scalar 
degree of freedom ‘locally’, while allowing it to change 
GR globally.

Hubble expansion (not GR)

Solar/Galaxy scales(?) (“GR”)
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“Screening” Mechanisms

Three known mechanisms :

Chameleons

Symmetrons

Vainshstein Mechanism

Relies on changing gravity as 
a function of local ambient potential

Khoury + Weltman (2004)

Pietroni (2004), Hinterbichler + Khoury (2010)

Vainshstein (1972)

operate via non-trivial
scalar self-couplings (e.g. massive gravity)

Our Ingredients : gravity + 1 scalar d.o.f.

f(R)e.g.
Brax et al (2010)

Any viable theory of modified gravity must have some 
form of screening mechanism
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Screened and Unscreened ObjectsMotivation Screening Mechanisms Stellar Structure Galaxies Summary and Outlook

The Screening Mechanism (4)

How is this achieved?

The effective potential has a minimum whose position is

density dependent.

If the perturbing body is large then the field inside the object

will be able to minimise the potential and so will be locked in

at a constant value throughout the majority of the

perturbation.

There is no fifth force except in a very thin shell near the

surface and the body is said to be screened.

Φ�r�

Motivation Screening Mechanisms Stellar Structure Galaxies Summary and Outlook

The Screening Mechanism (5)

If the perturbation is small then the potential will not be
minimised and the field will vary throughout the entire body.

In this case the body feels the fifth force and is said to be
unscreened.

Φ�r�

Big Perturbation from ambient 
density

“Thin Shell Screening”

Fφ ∝ ∇φ = 0

ρbρb

Minimum φb

Minimum φin

5th force is proportional to gradient of 

β(φ) =
d lnA(φ)

dφ
Fφ ∝

√
Gβ(φ)�∇φ

φ

Homogenous ambient     = no gradients = no 5th forceρb

Perturbation around ambient generates gradients

Small Perturbation from ambient 
density

“Fully Unscreened”
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Motivation Screening Mechanisms Stellar Structure Galaxies Summary and Outlook

Partially Screened Stars (1)

In practice, stars will be partially screened i.e. there is a screening
radius rs that separates the screened interior from the unscreened
exterior of the star.

r�R

r� rs

Φ�r�

ρb

Partially Screened Objects

Screening Radius

�∇2φ ≈
�

β0ρ(r)/Mpl rs < r � m−1
0

0 r < rs

→ fφ ≈ 2β0fN
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Parameterizing Modified Gravity

αb ≡ 2β2
b

Two Parameters :

βb =
d lnA(φb)

dφ

Example: f(R) theories , αb = 1/3

Current constraints : χb < 10−4

Halo Cluster, Schmidt (2009)
χb < 10−6

Solar System (?)

χb , αb

χb ≡
φb

2Mpβb
> Newtonian Potential ΦN

Screening? If unscreened, how strong?

Is it unscreened? If it is, how strong is the fifth force?
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Who screens What?
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FIG. 4: A schematic illustration of observational tests. Φself

and Φenv represent the gravitational potentials of an object
and its environment. They can be thought of as ∼ (v/c)2,
where v is the internal velocity. The value ϕ∗/(2α) delineates
screening or lack thereof—objects/environments with a po-
tential deeper than ϕ∗/(2α) are screened (shaded), and those
with a shallower potential are unscreened (unshaded). Cur-
rent constraints tell us ϕ∗/(2α) has to be less than ∼ 10−6.
There are many comparison tests one can make. For instance,
an unscreened diffuse gas cloud residing in a dwarf galaxy
(A), versus a screened star residing in the same galaxy (B)—
A falls faster than B. This situation can be replicated on a
larger scale e.g. a dwarf galaxy in the fields/voids (A) ver-
sus a massive galaxy in the same fields/voids (B). Another
example: a dwarf galaxy out in the fields/voids (A), versus a
dwarf galaxy residing in a group or cluster (D)—D is blanket
screened by its environment and would exhibit no equivalence
principle violations in its internal motions of gas clouds and
stars, while A would have observable violations. On the other
hand, a massive galaxy would have no such (internal) equiva-
lence principle violations whether it be in the fields/voids (B)
or in a group/cluster (C).

Yukawa suppression that plagues the bulk motion tests
of some f(R) models i.e. the scalar Compton wavelength
probably exceeds the size of a galaxy (Eq. (81)). To max-
imize the chance that the galaxy studied is unscreened,
one should look for the smallest galaxies, preferably in
voids or at least in the fields 16. A small galaxy with

should unveil systematic difference in the mass estimated from
HI and that from stars, should the chameleon mechanism be at
work.

16 Screened galaxies are not interesting for this test because both
the stars and the HI gas would be blanket screened.

internal v ∼ 30 km/s would provide us either a positive
detection of the chameleon mechanism, or an upper limit
on ϕ∗/(2α) of about 10−8, for an O(1) α like in f(R).

Test 4. In addition to estimating masses of galax-
ies from their internal dynamics, one could also esti-
mate their masses using gravitational lensing. Photons
should behave as unscreened particles and move on null
geodesics in the Jordan frame. They therefore see the
(Φ + Ψ)/2 potential. Unscreened non-relativistic objects
(such as HI gas clouds) on the other hand should move ac-
cording to the Φ potential, while screened non-relativistic
objects (such as stars) should move according to Eq. (72)
with ε ∼ 0. Eq. (C6) together with the assumption of
negligible Yukawa suppression then tells us that the mass
estimate from photons should equal the mass estimate
from stars, and both should be smaller than the mass
estimate from HI by a factor of 1 + 2α2. Carrying out
this test might be a bit challenging as one would ideally
like to measure the lensing mass for the smallest galaxies
possible to avoid screening of the whole galaxy. Stack-
ing small galaxies and performing a weak lensing shear
measurement is likely the way to go.

Incidentally, returning briefly to the subject of bulk
motion: for the same reasons articulated above, weak
lensing measurements on large scales should yield con-
sistent results when compared against redshift distortion
measurements of screened (large) galaxies, but inconsis-
tent results when compared against redshift distortions
of unscreened (small) galaxies 17. This adds a possible
new twist to existing tests of this sort proposed in the
literature [64].

Test 5. Kesden and Kamionkowski [65] recently pro-
posed an interesting test of the equivalence principle: if
dark matter particles and stars fall at different rates un-
der gravity, the tidal streams from infalling galactic satel-
lites would be asymmetric. To this the chameleon mech-
anism adds a new twist: only unscreened (small) galax-
ies will exhibit this asymmetry; screened (large) galaxies
will not, because both dark matter and stars are blanket
screened. The current limit of ϕ∗/(2α) ∼< 10−6 guaran-
tees that the Milky Way does not exhibit the Kesden-
Kamionkowski effect. To see it, one would have to ex-
amine smaller galaxies, preferably out in the fields or
voids. It is also important to emphasize the difference in
the origin of equivalence principle violation in this paper
from that in most of the cosmology literature, including
[65]. In most of the literature, equivalence principle vi-
olation is there from the beginning, in the sense that it
exists at the level of the microscopic action i.e. elemen-
tary baryons and dark matter particles are coupled to
the scalar differently (see discussion in §I). In this pa-
per, there is no explicit equivalence principle violation at
the level of the microscopic action—it gets turned on by
the chameleon mechanism and differentiates not so much

17 Modulo Yukawa suppression, as usual.

Hui, Nicolis + Stubbs (2009)

χb

χb
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Some Assumptions/Fine Print

• Quasi-static Limit : dφ

dt
≈ 0

• Scalar field contributes little energy density

• Conformal/Coupling factor A2(φ) ≈ 1
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A ton of Astrophysical Data!!
• Large Galaxy Surveys (SDSS/LSST) : galaxy spectra, 

metallicities, morphology

• Internal structure of galaxies : orbits of HI gas clouds, 
globular clusters, satellites

• Stellar census of globular clusters, nearby dwarfs 
(ANGST), Cepheids/RR Lyrae, red giants stars

The ACS Nearby Galaxy Survey Treasury

home
project
data
search
publications
outreach
gallery
people
faq

The ANGST Galaxy Sample

Antlia SexA N3109 SexB

KKR25 KK230 E294-010 E410-005

I5152 GR8 N55 N300

UA438 DDO187 KKH98 DDO125

SDSS Spectroscopic Survey HST Cepheids Survey
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Messy, but also a lot of information

• Complex interaction between different 
processes at many different energy scales

• Some standard physical processes not well 
understood (e.g. supernova feedback, effects of 
galactic B field etc.)

• MG => O(1) effects! Problem are : degeneracies 
between modified gravity signatures and 
“regular observables”.

• We want to figure out what are the signatures 
and how to break the degeneracies.
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Next : Modified Gravity 
Changes Stellar Behavior

• Modified Gravity makes gravity stronger 

• To support itself, stars need higher pressures

• Hence it needs to be hotter and burns fuel at a 
higher rate

• Stars are then more luminous, but live shorter 
lives!

Chang + Hui (2010), 
Davis, Lim, Sakstein, Shaw (2011)

Rest of the Talk will be about Stars!
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The Life of a Star

Sun lifetime ~ 10 Gyr

Lo
g 

Lu
m

in
os

ity

Temperature

Astronomy-in-a-minute

Evolutionary Track of stars (Isochrone)

Roughly : Burn H to make He to 
make C to make N and O as 

Temperature increase
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The Life of a Star

Zero Age MS (ZAMS)

~ 0.1 Gyr

~ 10 Gyr

~ 1 Gyr

Monday, October 10, 2011



The Life of a Star

• Hertzrung-Russell 
Diagram (HR diagram)

• Evolutionary tracks 
(isochrones) depends on 
mass, composition and its 
environment. And 
gravitational model!

• Assumption (dangerous) : 
ambient density remains 
the same.
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Stellar Structure Equations

dT

dr
= − 3

4ac

κρ

T 3

L(r)

4πr2
,
dL(r)

dr
= 4πr2�(r)

Radiative Transfer Energy Generation

The only component of the system of equations that 
needs changing is the Hydrostatics Equilibrium 

Equation

dP

dr
= −Gρm

r2
,
dm

dr
= 4πr2ρ

Hydrostatic Equilibrium Mass Conservation

P = (ρ, T )

Equation of State
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Lonely Star Model

Am I self-screened?
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Solving the Stellar Structure 
Equations

• Dimension Analysis

• Analytic solution : Eddington Standard model 

• Numerical solution (with MESA)
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1. Dimension Analysis
Assuming completely unscreened stars : Geff → (1 + αb)G

Low Mass / Gas Supported Stars L ∝ G4
effM

3

High Mass / Radiation Supported Stars L ∝ GeffM

f(R) theories , αb = 1/3Example : 

See also Fred Adams (2008)

Pgas ∝ ρT , Prad ∝ T 4 , ρ ∼ MR−3
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2. Analytic solution : 
Eddington Standard Model

dT

dr
= − 3

4ac

κρ

T 3

L(r)

4πr2
,
dL(r)

dr
= 4πr2�(r)

Radiative Transfer Energy Generation

dP

dr
= −Gρm

r2
,
dm

dr
= 4πr2ρ

Hydrostatic Equilibrium Mass Conservation

P = (ρ, T )

Equation of State
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2. Analytic solution : 
Eddington Standard Model

dT

dr
= − 3

4ac

κρ

T 3

L(r)

4πr2
,
dL(r)

dr
= 4πr2�(r)

Radiative Transfer Energy Generation

Hydrostatic Equilibrium Mass Conservation

P = (ρ, T )

Equation of State

dP

dr
= −Ftotal(r)ρ ,

dm

dr
= 4πr2ρ

5

equation, the presence of modified gravity only changes
that particular equation and not the others [12].

Let’s focus on the HSE equation. For hydrostatic equi-
librium the pressure gradient must balance the other ra-
dial forces, F , i.e. gravitational and φ force,

F (r) = fgrav + fφ =
dΦN

dr
+

β(φ)

Mpl

dφ

dr
.

Hydrostatic equilibrium, Eqn. (26), then requires:

dP (r)

dr
= −

�
dΦN

dr
+

β(φ)

Mpl

dφ

dr

�
ρ(r). (30)

It is clear from this equation that the pressure support
must act against both the gravitational force and the
force carried by the scalar. To find the gravitational
force, we integrate the Poisson Eqn. (13) and use the
continuity Eqn. (27) to obtain the solution to the gravi-
tational potential as a function of mass m(r),

dΦN

dr
=

Gm(r)

r2
, m(r) = 4π

� r

0

r
� 2 dr� ρ(r�). (31)

Meanwhile, the scalar forces are given as functions of the
gravitational potential and α0 governed by Eqns. (22)
and (17). Combining these with Eqn. (31) we then find

β(φ)

Mpl

dφ

dr
≈ α0

�
G (m(r)−m(rs))

r2

�
H(r − rs). (32)

To finally close the system of equations, we find rs from
Eq. (23), which after integrating by parts and using the
Poisson Eqn. (13) yields an implicit solution for rs

4πG

� R

rs

rρ(r) dr = χ0 ≡ φ0

2β0 Mpl

. (33)

The implicity of the solution for rs means that we have
to iterate to find the complete solution. We will do this
in the next section for a polytropic star, but first we note
that we can write the HSE in a very suggestive form by
combining Eqns. (30) and (32) to obtain the modified

HSE equation

dP

dr
= −ρ(r)

Gm(r)

r2

�
1 + α0

�
1− m(rs)

m(r)

�
H(r − rs)

�
.,

(34)
By defining an effective force coupling αeff(r),

αeff = α0

�
1− m(rs)

m(r)

�
, (35)

it is clear that the effective

Geff(r) = G(1 + αeff(r)) (36)

scales similarly. In an unscreened theory, the screened
mass m(rs) = 0 and the effective Geff = (1 + α0)G. One
can think of the quantity 1 − m(rs)/m(r) as a “scalar
charge”, the existence of which is the source of equiva-
lence principle violation in such theories.

B. Scaling Relations

Ultimately, we will consider the general case where 0 <

αeff(r) < α0, however let us first build up intuition by
considering simple scaling relations [6] in the two limits
where

• the fifth force is highly suppressed rs ≈ R or gravity
unmodified α0 = 0: Geff ≈ G = const and

• the fifth force is completely unsuppressed: rs = 0,
Geff(r) = (1 + α0)G = const.

Suppose that P ∝ ρpT q where the constant of pro-
portionality depends only on non-gravitational physics.
Under G → G(1 + α�), we assume that the solutions to
the stellar structure equations simply scale as P (r) →
cPP (r), ρ(r) → cρρ(r), r → crr, l(r) → cLl(r) and
T (r) → cTT (r) for some constant ci which depend on
α�; we take κop(r) ≈ κes = const. We consider a star of
fixed mass M , this imposes the condition cρc

3

r = 1. The
equation of state imposes cP = c

p
ρc

q
T . The scaling of the

hydrostatic equilibrium and radiative transfer equations
gives:

cP = c
2

ρc
2

r(1 + α0) = c
4/3
ρ (1 + α0), (37)

cL =
c
4

T cr

cρ
=

cT

c
4/3
ρ

. (38)

Using the equation of state and hydrostatic equilibrium

gives cp−4/3
ρ c

q
T
= (1 + α0) and so:

cL = (1 + α0)
4/q

c

4(4−q−3p)
3q

ρ .

Stars can be supported by two kinds of pressure terms
– radiation Prad or gas Pgas. Stars of around solar mass or
less are domoinated by gas pressure Pgas = kBρT/µmH

and so p = q = 1. On the other hand, massive stars
are dominated by radiation pressure Prad = aT

4
/3 and

so p = 0, and q = 4. In both cases the cρ dependence
disappears from the cL scaling relation, and cL depends
only on α0. Simple algebra than yields the relationship
between Luminosity L and Geff and M

For massive stars L ∝ GM hence

L → (1 + α0)L, (39)

whereas for low mass stars L ∝ G
4
M

3

L → (1 + α0)
4
L. (40)

For α0 = 1/3, then such simple scaling relations tell
us that we should expect unscreened less (more) mas-
sive stars’ luminosity to be 3 (0.33) times more than its
screene counterparts. We will see this explicitly in the
next section when we solve for the equations of stellar
structure.

gravity 5th force
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2. Analytic solution : 
Eddington Standard Model

5

equation, the presence of modified gravity only changes
that particular equation and not the others [12].

Let’s focus on the HSE equation. For hydrostatic equi-
librium the pressure gradient must balance the other ra-
dial forces, F , i.e. gravitational and φ force,

F (r) = fgrav + fφ =
dΦN

dr
+

β(φ)

Mpl

dφ

dr
.

Hydrostatic equilibrium, Eqn. (26), then requires:

dP (r)

dr
= −

�
dΦN

dr
+

β(φ)

Mpl

dφ

dr

�
ρ(r). (30)

It is clear from this equation that the pressure support
must act against both the gravitational force and the
force carried by the scalar. To find the gravitational
force, we integrate the Poisson Eqn. (13) and use the
continuity Eqn. (27) to obtain the solution to the gravi-
tational potential as a function of mass m(r),

dΦN

dr
=

Gm(r)

r2
, m(r) = 4π

� r

0

r
� 2 dr� ρ(r�). (31)

Meanwhile, the scalar forces are given as functions of the
gravitational potential and α0 governed by Eqns. (22)
and (17). Combining these with Eqn. (31) we then find

β(φ)

Mpl

dφ

dr
≈ α0

�
G (m(r)−m(rs))

r2

�
H(r − rs). (32)

To finally close the system of equations, we find rs from
Eq. (23), which after integrating by parts and using the
Poisson Eqn. (13) yields an implicit solution for rs

4πG

� R

rs

rρ(r) dr = χ0 ≡ φ0

2β0 Mpl

. (33)

The implicity of the solution for rs means that we have
to iterate to find the complete solution. We will do this
in the next section for a polytropic star, but first we note
that we can write the HSE in a very suggestive form by
combining Eqns. (30) and (32) to obtain the modified

HSE equation

dP

dr
= −ρ(r)

Gm(r)

r2

�
1 + α0

�
1− m(rs)

m(r)

�
H(r − rs)

�
.,

(34)
By defining an effective force coupling αeff(r),

αeff = α0

�
1− m(rs)

m(r)

�
, (35)

it is clear that the effective

Geff(r) = G(1 + αeff(r)) (36)

scales similarly. In an unscreened theory, the screened
mass m(rs) = 0 and the effective Geff = (1 + α0)G. One
can think of the quantity 1 − m(rs)/m(r) as a “scalar
charge”, the existence of which is the source of equiva-
lence principle violation in such theories.

B. Scaling Relations

Ultimately, we will consider the general case where 0 <

αeff(r) < α0, however let us first build up intuition by
considering simple scaling relations [6] in the two limits
where

• the fifth force is highly suppressed rs ≈ R or gravity
unmodified α0 = 0: Geff ≈ G = const and

• the fifth force is completely unsuppressed: rs = 0,
Geff(r) = (1 + α0)G = const.

Suppose that P ∝ ρpT q where the constant of pro-
portionality depends only on non-gravitational physics.
Under G → G(1 + α�), we assume that the solutions to
the stellar structure equations simply scale as P (r) →
cPP (r), ρ(r) → cρρ(r), r → crr, l(r) → cLl(r) and
T (r) → cTT (r) for some constant ci which depend on
α�; we take κop(r) ≈ κes = const. We consider a star of
fixed mass M , this imposes the condition cρc

3

r = 1. The
equation of state imposes cP = c

p
ρc

q
T . The scaling of the

hydrostatic equilibrium and radiative transfer equations
gives:

cP = c
2

ρc
2

r(1 + α0) = c
4/3
ρ (1 + α0), (37)

cL =
c
4

T cr

cρ
=

cT

c
4/3
ρ

. (38)

Using the equation of state and hydrostatic equilibrium

gives cp−4/3
ρ c

q
T
= (1 + α0) and so:

cL = (1 + α0)
4/q

c

4(4−q−3p)
3q

ρ .

Stars can be supported by two kinds of pressure terms
– radiation Prad or gas Pgas. Stars of around solar mass or
less are domoinated by gas pressure Pgas = kBρT/µmH

and so p = q = 1. On the other hand, massive stars
are dominated by radiation pressure Prad = aT

4
/3 and

so p = 0, and q = 4. In both cases the cρ dependence
disappears from the cL scaling relation, and cL depends
only on α0. Simple algebra than yields the relationship
between Luminosity L and Geff and M

For massive stars L ∝ GM hence

L → (1 + α0)L, (39)

whereas for low mass stars L ∝ G
4
M

3

L → (1 + α0)
4
L. (40)

For α0 = 1/3, then such simple scaling relations tell
us that we should expect unscreened less (more) mas-
sive stars’ luminosity to be 3 (0.33) times more than its
screene counterparts. We will see this explicitly in the
next section when we solve for the equations of stellar
structure.

gravity 5th force

5

equation, the presence of modified gravity only changes
that particular equation and not the others [12].

Let’s focus on the HSE equation. For hydrostatic equi-
librium the pressure gradient must balance the other ra-
dial forces, F , i.e. gravitational and φ force,

F (r) = fgrav + fφ =
dΦN

dr
+

β(φ)

Mpl

dφ

dr
.

Hydrostatic equilibrium, Eqn. (26), then requires:

dP (r)

dr
= −

�
dΦN

dr
+

β(φ)

Mpl

dφ

dr

�
ρ(r). (30)

It is clear from this equation that the pressure support
must act against both the gravitational force and the
force carried by the scalar. To find the gravitational
force, we integrate the Poisson Eqn. (13) and use the
continuity Eqn. (27) to obtain the solution to the gravi-
tational potential as a function of mass m(r),

dΦN

dr
=

Gm(r)

r2
, m(r) = 4π

� r

0

r
� 2 dr� ρ(r�). (31)

Meanwhile, the scalar forces are given as functions of the
gravitational potential and α0 governed by Eqns. (22)
and (17). Combining these with Eqn. (31) we then find

β(φ)

Mpl

dφ

dr
≈ α0

�
G (m(r)−m(rs))

r2

�
H(r − rs). (32)

To finally close the system of equations, we find rs from
Eq. (23), which after integrating by parts and using the
Poisson Eqn. (13) yields an implicit solution for rs

4πG

� R

rs

rρ(r) dr = χ0 ≡ φ0

2β0 Mpl

. (33)

The implicity of the solution for rs means that we have
to iterate to find the complete solution. We will do this
in the next section for a polytropic star, but first we note
that we can write the HSE in a very suggestive form by
combining Eqns. (30) and (32) to obtain the modified

HSE equation

dP

dr
= −ρ(r)

Gm(r)

r2

�
1 + α0

�
1− m(rs)

m(r)

�
H(r − rs)

�
.,

(34)
By defining an effective force coupling αeff(r),

αeff = α0

�
1− m(rs)

m(r)

�
, (35)

it is clear that the effective

Geff(r) = G(1 + αeff(r)) (36)

scales similarly. In an unscreened theory, the screened
mass m(rs) = 0 and the effective Geff = (1 + α0)G. One
can think of the quantity 1 − m(rs)/m(r) as a “scalar
charge”, the existence of which is the source of equiva-
lence principle violation in such theories.

B. Scaling Relations

Ultimately, we will consider the general case where 0 <

αeff(r) < α0, however let us first build up intuition by
considering simple scaling relations [6] in the two limits
where

• the fifth force is highly suppressed rs ≈ R or gravity
unmodified α0 = 0: Geff ≈ G = const and

• the fifth force is completely unsuppressed: rs = 0,
Geff(r) = (1 + α0)G = const.

Suppose that P ∝ ρpT q where the constant of pro-
portionality depends only on non-gravitational physics.
Under G → G(1 + α�), we assume that the solutions to
the stellar structure equations simply scale as P (r) →
cPP (r), ρ(r) → cρρ(r), r → crr, l(r) → cLl(r) and
T (r) → cTT (r) for some constant ci which depend on
α�; we take κop(r) ≈ κes = const. We consider a star of
fixed mass M , this imposes the condition cρc

3

r = 1. The
equation of state imposes cP = c

p
ρc

q
T . The scaling of the

hydrostatic equilibrium and radiative transfer equations
gives:

cP = c
2

ρc
2

r(1 + α0) = c
4/3
ρ (1 + α0), (37)

cL =
c
4

T cr

cρ
=

cT

c
4/3
ρ

. (38)

Using the equation of state and hydrostatic equilibrium

gives cp−4/3
ρ c

q
T
= (1 + α0) and so:

cL = (1 + α0)
4/q

c

4(4−q−3p)
3q

ρ .

Stars can be supported by two kinds of pressure terms
– radiation Prad or gas Pgas. Stars of around solar mass or
less are domoinated by gas pressure Pgas = kBρT/µmH

and so p = q = 1. On the other hand, massive stars
are dominated by radiation pressure Prad = aT

4
/3 and

so p = 0, and q = 4. In both cases the cρ dependence
disappears from the cL scaling relation, and cL depends
only on α0. Simple algebra than yields the relationship
between Luminosity L and Geff and M

For massive stars L ∝ GM hence

L → (1 + α0)L, (39)

whereas for low mass stars L ∝ G
4
M

3

L → (1 + α0)
4
L. (40)

For α0 = 1/3, then such simple scaling relations tell
us that we should expect unscreened less (more) mas-
sive stars’ luminosity to be 3 (0.33) times more than its
screene counterparts. We will see this explicitly in the
next section when we solve for the equations of stellar
structure.

�∇2φ ≈
�

β0ρ(r)/Mpl rs < r � m−1
0

0 r < rs
using

5

equation, the presence of modified gravity only changes
that particular equation and not the others [12].

Let’s focus on the HSE equation. For hydrostatic equi-
librium the pressure gradient must balance the other ra-
dial forces, F , i.e. gravitational and φ force,

F (r) = fgrav + fφ =
dΦN

dr
+

β(φ)

Mpl

dφ

dr
.

Hydrostatic equilibrium, Eqn. (26), then requires:

dP (r)

dr
= −

�
dΦN

dr
+

β(φ)

Mpl

dφ

dr

�
ρ(r). (30)

It is clear from this equation that the pressure support
must act against both the gravitational force and the
force carried by the scalar. To find the gravitational
force, we integrate the Poisson Eqn. (13) and use the
continuity Eqn. (27) to obtain the solution to the gravi-
tational potential as a function of mass m(r),

dΦN

dr
=

Gm(r)

r2
, m(r) = 4π

� r

0

r
� 2 dr� ρ(r�). (31)

Meanwhile, the scalar forces are given as functions of the
gravitational potential and α0 governed by Eqns. (22)
and (17). Combining these with Eqn. (31) we then find

β(φ)

Mpl

dφ

dr
≈ α0

�
G (m(r)−m(rs))

r2

�
H(r − rs). (32)

To finally close the system of equations, we find rs from
Eq. (23), which after integrating by parts and using the
Poisson Eqn. (13) yields an implicit solution for rs

4πG

� R

rs

rρ(r) dr = χ0 ≡ φ0

2β0 Mpl

. (33)

The implicity of the solution for rs means that we have
to iterate to find the complete solution. We will do this
in the next section for a polytropic star, but first we note
that we can write the HSE in a very suggestive form by
combining Eqns. (30) and (32) to obtain the modified

HSE equation
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= −ρ(r)

Gm(r)
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�
1 + α0
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1− m(rs)

m(r)

�
H(r − rs)

�
.,

(34)
By defining an effective force coupling αeff(r),

αeff = α0

�
1− m(rs)

m(r)

�
, (35)

it is clear that the effective

Geff(r) = G(1 + αeff(r)) (36)

scales similarly. In an unscreened theory, the screened
mass m(rs) = 0 and the effective Geff = (1 + α0)G. One
can think of the quantity 1 − m(rs)/m(r) as a “scalar
charge”, the existence of which is the source of equiva-
lence principle violation in such theories.

B. Scaling Relations

Ultimately, we will consider the general case where 0 <

αeff(r) < α0, however let us first build up intuition by
considering simple scaling relations [6] in the two limits
where

• the fifth force is highly suppressed rs ≈ R or gravity
unmodified α0 = 0: Geff ≈ G = const and

• the fifth force is completely unsuppressed: rs = 0,
Geff(r) = (1 + α0)G = const.

Suppose that P ∝ ρpT q where the constant of pro-
portionality depends only on non-gravitational physics.
Under G → G(1 + α�), we assume that the solutions to
the stellar structure equations simply scale as P (r) →
cPP (r), ρ(r) → cρρ(r), r → crr, l(r) → cLl(r) and
T (r) → cTT (r) for some constant ci which depend on
α�; we take κop(r) ≈ κes = const. We consider a star of
fixed mass M , this imposes the condition cρc

3

r = 1. The
equation of state imposes cP = c

p
ρc

q
T . The scaling of the

hydrostatic equilibrium and radiative transfer equations
gives:

cP = c
2

ρc
2

r(1 + α0) = c
4/3
ρ (1 + α0), (37)

cL =
c
4

T cr

cρ
=

cT

c
4/3
ρ

. (38)

Using the equation of state and hydrostatic equilibrium

gives cp−4/3
ρ c

q
T
= (1 + α0) and so:

cL = (1 + α0)
4/q

c

4(4−q−3p)
3q

ρ .

Stars can be supported by two kinds of pressure terms
– radiation Prad or gas Pgas. Stars of around solar mass or
less are domoinated by gas pressure Pgas = kBρT/µmH

and so p = q = 1. On the other hand, massive stars
are dominated by radiation pressure Prad = aT

4
/3 and

so p = 0, and q = 4. In both cases the cρ dependence
disappears from the cL scaling relation, and cL depends
only on α0. Simple algebra than yields the relationship
between Luminosity L and Geff and M

For massive stars L ∝ GM hence

L → (1 + α0)L, (39)

whereas for low mass stars L ∝ G
4
M

3

L → (1 + α0)
4
L. (40)

For α0 = 1/3, then such simple scaling relations tell
us that we should expect unscreened less (more) mas-
sive stars’ luminosity to be 3 (0.33) times more than its
screene counterparts. We will see this explicitly in the
next section when we solve for the equations of stellar
structure.

Implicit equation for 
screening radius

Motivation Screening Mechanisms Stellar Structure Galaxies Summary and Outlook

Partially Screened Stars (1)

In practice, stars will be partially screened i.e. there is a screening
radius rs that separates the screened interior from the unscreened
exterior of the star.

r�R

r� rs

Φ�r�

Geff → G(1 + αeff (r))

αeff (r) = αb

�
1− m(rs)

m(r)

�
H(r − rs)
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2. Analytic solution : 
Eddington Standard Model

dT

dr
= − 3

4ac

κρ

T 3

L(r)

4πr2
,
dL(r)

dr
= 4πr2�(r)

Radiative Transfer Energy Generation

Hydrostatic Equilibrium Mass Conservation Equation of State

dP

dr
= −Geffρm

r2
,
dm

dr
= 4πr2ρ

Total gas + radiation pressure

T 3 ∝ ρ

Decoupled

P = Pgas + Prad =
Prad

(1− b(αeff ))

P = Kρ4/3

Constant entropy gradient

Opacity is constant κ = constant
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Semi-Analytic Prescription

L =
4πc(1− b(αeff ))[1 + αeff (R)]GM

κ

1

ξ2
d

dξ

�
ξ2

dθ(ξ)

dξ

�
= −[1 + αbΘ(ξ − ξs)]θ

3(ξ)

Modified Lane-Emden Equations 

ξ ≡ r(Pc/πGρc)
−1/2

Upshot : Luminosity as a function of stellar mass       and 

(Totally screened star is an n=3 polytrope.)
χbM

P = Pcθ
4(ξ) , ρ = ρcθ

3(ξ) , T = Tcθ(ξ)
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• Use modified Hydrostatic Eqb. Eqn. to obtain 
the modified Lane-Emden Equation

• Solve Lane-Emden and Eddington’s quartic 
equation to obtain screening radius        
and              .

• Luminosity is then determined by 

Semi-Analytic Prescription

L =
4πc(1− b(αeff ))[1 + αeff (R)]GM

κ

rs
αeff (r)

αeff (r) = αb

�
1− m(rs)

m(r)

�
H(r − rs)
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Live Fast, Die Young
τMS = 10

�
M

M⊙

��
L⊙

L(M)

�
GyrMain Sequence Lifetime

3 times increase in luminosity = 3 times shorter in life!

White Dwarfs and Neutron stars are very dense hence very 
screened, so we don’t expect Chandrasekhar mass to 
change. But different evolution to final states may change 

composition

Leave a good looking corpse behind?
James Dean
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• The Sun must be screened, or almost screened. 
Self-screening bounds  

• Not self-screened, but screened by Milky Way 
bounds        

• But perhaps the Local Group dominates? I.e. the 
Sun is screened by a much deeper potential well?

• Most conservative constraints                      from 
galaxy cluster statistics. (Schmidt 2009)

What about the Sun?

χb ∼ 10−6

χb ∼ 10−4

χb ∼ 10−6
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3. Building Realistic Stars/
Galaxies (Numerical)

• To test all this stuff, we need more precise 
predictions.

• Construct stars/isochrones using stellar 
simulator (modified MESA code). (w/ Bill 
Paxton)

• Construct galaxies with galaxy synthesis code 
(GALEV). (w/ Ralf Kotulla)
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Modified MESA code
• MESA is a 1-D stellar evolution code with complete 

convective, nuclear energy generation, opacity 
modeling.

– 39 –

toward surface

toward center

!" 1! #" 1! $" 1! %" 1, ...face k-1

!"! #"! $"! %"! σ

σ

"!

! !

&'!" !(!" )"! * "! *! "face k

!"!1! #"!1! $"!1! %"!1! "!1! &'!"!1, ...face k!1

(!" 1 " 1! *" 1! +'!" 1! )" 1, ...cell k-1

(!" "! *"! +'!"! )"! ,(!" εnuc!k εgrav!kcell k

Fig. 9.— Schematic of some cell and face variables for MESA star.

Each cell has some variables that are mass-averaged and others that are defined at
the outer face, as shown in Figure 9. This way of defining the variables is a consequence
of the finite volume, flux conservation formulation of the equations and improves stability
and efficiency (Sugimoto et al. 1981). The inner boundary of the innermost cell is usually
the center of the star and, therefore, has radius, luminosity, and velocity equal to zero.
Nonzero center values can be used for applications that remove the underlying star (e.g., the
envelope of a neutron star), in which case the user must define the values of Mc and Lc at
the inner radius Rc. The cell mass-averaged variables are density ρk, temperature Tk, and
mass fraction vector Xi,k. The boundary variables are mass interior to the face mk, radius
rk, luminosity Lk, and velocity vk. In addition to these basic variables, composite variables
are calculated for every cell and face, such as �nuc, κ, σk, and Fk (see Table 1 for variable
definitions). All variables are evaluated at time t+ δ t unless otherwise specified.

Geff
k−1

Geff
k

Geff
k+1

Calculate Geff and rs using previous step ρ(r)

Bill Paxton (KITP)

Davis, Lim, Sakstein (in prep)
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Modified MESA code

ZAMS

Red Giant Branch

1 M⊙1.5 M⊙

Compare Eddington Standard model prediction
in the Main Sequence 
∆Teff ∼ O(100) K

Chang+Hui (2010) 

4 Chang & Hui

Figure 3. Left plot shows evolutionary track of stars of various masses (denoted in units of solar masses for each track: 1M! in thick red
lines and 1.5M! in thin blue lines) for different values of ϕ∗/2α = 0 (solid lines; scalar completely screened i.e. GR), 10−6 (short-dashed
lines), 10−7 (long-dashed lines), and 10−8 (dotted lines), all with 2α2 = 1/3 appropriate for f(R) gravity. Right plot is a closeup of the
star on the RGB highlighting the difference between the completely screened star, and the partially screened ones. Note the difference in
Te between the two is ≈ 130 K.

on the RGB phase as these stars are sufficiently bright
that they can be observed in distant galaxies (see our
discussion in §4). In Figure 2 we show the structure of a
≈ 2×103 L! RGB star that evolved from a 1M! main se-
quence star with ϕ∗/2α = 10−6 (i.e. screened at its core)
and 0 (i.e. screened in its entirety, meaning GR limit).
Solar metallicity is assumed, as in the rest of the paper.
The difference in photospheric radius between the two
stars is ≈ 10R! with the completely screened star being
larger (R ≈ 145R!). Because of the smaller radius of
the scalar-field influenced star, its effective temperature
is larger by ≈ 150 K (Teff = 3395 K vs 3258 K).
In Figure 3, we plot the HR diagram for 1 (red) and 1.5

(blue) M! stars with different degrees of screening. We
evolve a star from the zero-age main sequence (ZAMS) up
to the tip of the red giant branch (TRGB) for ϕ∗/2α =
0 (solid lines; no scalar correction i.e. complete screen-
ing), 10−6 (short-dashed lines), 10−7 (long-dashed lines),
and 10−8 (dotted lines). We have not considered val-
ues smaller than ϕ∗/2α < 10−8 as the potential depth
(v2cir/c

2) of dwarf galaxies are typically ∼ 10−8. This
means that cases where ϕ∗/2α < 10−8 are subject to
blanket screening: a host galaxy with a potential as shal-
low as that of a typical dwarf is sufficient to screen the
scalar for the star of interest (see §4 for more discussions
on blanket screening).
We note the following features. For ϕ∗/2α = 10−6,

significant departures from the main sequence is imme-
diately apparent, whereas for ϕ∗/2α = 10−7 and 10−8,
significant deviation do not appear until the RGB phase.
That is to say, the scalar field affects the outer envelope
for a 1 M! star even on the main sequence, effectively in-
creasing the star’s mass (i.e. increasing its photospheric
temperature for the same luminosity). This effect is re-
duced and harder to observe for smaller values of ϕ∗/2α.
We do not comment on this effect here, choosing instead
to focus on RGB stars, but it potentially allows for yet

another probe of modified gravity, albeit for larger val-
ues of ϕ∗/2α (∼ 10−6). Second, all three ϕ∗/2α’s show
measurable differences from the the fully screened case
(i.e. GR limit) on the RGB. Namely, the scalar-field
influenced 1 M! case has nearly the same effective tem-
perature as the 1.5M! RGB for ϕ∗/2α = 10−6 and 10−7

, i.e., the scalar-influenced star is hotter by ≈ 150 K (this
effect is smaller – ∆Teff ≈ 60 K – for the ϕ∗/2α = 10−8

case).
To develop a better qualitative understanding of why

red giants are such good probes of chameleon gravity, we
plot the ratio of the radiative acceleration, arad, and the
effective gravity, geff (total scalar + gravitational accel-
eration), as a function of mass fraction in Figure 2. Here
we define arad = κL/4πr2c as a function of the total lu-
minosity, L, where κ is the Rosseland mean opacity. As
arad > geff for the vast majority of the envelope, the en-
ergy flux is not carried outward by radiation, but rather
by convection (Kippenhahn & Weigert 1990; Paczyński
1969). Only near the photosphere, where arad = geff ,
can radiation carry away the star’s luminosity. It is this
condition arad = geff that determines the position of the
photosphere for both the fulled screened and partially
screened (scalar-influenced) star.
The opacity in the envelope is dominated by H− opac-

ity, which scales like T 9 for 3000 ! T ! 6000 K
(Hansen et al. 2004). The scaling between effective grav-
ity of the red giants (due to scalar fields) and the photo-
spheric temperature of εeff ∼ 9∆Tph/Tph then gives

∆Tph ≈ 110

(

Tph

4000K

)

( εeff
0.25

)

K, (15)

which roughly matches what we are finding in the full
calculation.
Finally in Figure 4, we consider the effect of differ-

ent values of the scalar coupling, α, on RGB structure
for three different values of ϕ∗/2α = 10−6, 10−7 and
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Evolution of screened and unscreened stars
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Evolution of screened and unscreened stars
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Evolution of Screening Radius
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ruled out?
• 65% Solar Mass Main sequence star unscreened, 

O(100) Kelvins temperature boost 

χb = 10−6

• Degenerate with metallicities

• Degenerate with stellar lifetime

• Degenerate with stellar mass.

• Lonely star model breaks -- screening from 
environment?
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Zeroth Order prediction : unscreened 
galaxies are brighter

Total luminosity is the sum of all stars’ output

Lgal =

� 100M⊙

0.08M⊙

dM f0(M, τage)Lstar(M ;χa)Ψ(M)

Initial Mass Function IMF Ψ(M) =
dN

dM
∝ M−2.35

Number of stars born in mass range dM (Salpeter IMF)

Fraction of stars that have gone off main sequence

f0(M, τage) =

�
1 τage < τMS

τMS/τage(M) τage > τMS(M)

τMS ∝ L−1
starNote                       so high mass (more luminous) 

stars scale out of the integral.
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Galaxy Clusters and Void 
Galaxies

• Galaxy Clusters are sitting in deep potential 
well                    : galaxies and stars inside must 
be screened 

• Milky Way Class galaxies                     possibly 
screening out all the stars inside.

• Dwarf Galaxies residing in intercluster voids 
only feel their own grav potential : 

χb ∼ 10−6

χb ∼ 10−6

χb ∼ 10−8

Void Dwarf Galaxies should look very 
different from Cluster Dwarf Galaxies
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Observational Tests?
• Void Dwarf galaxies are more luminous

• Void Dwarf galaxies are bluer

• Hertzsprung-Russell diagram different

• Shorter life-cycles : higher metalicities (look 
older?)

• Different post main sequence : red giants are 
similarly brighter (Chang + Hui, 2010) . Horizontal 
Branch?

• Stellar Pulsation? (Cepheids etc)
Jain, Hui, Vikram, Sakstein, Lim, Chang

τfree ∝ (Geffρ)
−1/2
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Understanding degeneracies
• Mass vs Modified Gravity 

• Metallicities vs Modified Gravity

• Environmental evolution (void galaxies vs 
cluster galaxies) vs Modified Gravity

• Galactic Mass vs Modified Gravity

• Many others etc....
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Summary

• MG = O(1) Effects! Stellar structure are 
modified.

• Main sequence stars are affected!

• MG stars are more luminous, more blue, 
smaller, and live shorter lifetimes.

• Individual stars are hard (no statistics), but 
galactic effects may be observable.
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