
2264-2

Workshop on Infrared Modifications of Gravity 

M. Milgrom

26 - 30 September 2011

Weizmann Institute of Science 
Israel

 
 

 

The MOND paradigm



The MOND paradigm

Moti Milgrom (Weizmann)

IR modifications of gravity, Trieste, September 2011



MOND introduced
A theory of dynamics (gravity/inertia) involving a new constant a0 (beside G, ...)

Standard limit (a0 → 0): The Newtonian limit

MOND limit : a0 →∞, G → 0, Ga0 fixed:

Scale invariance: (t, r) → λ(t, r)

a0 is analog to c in relativity or ~ in QM
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Example:

Point-like central mass: a = MG
R2 f

(
MG
R2a0

)

a ≈
{

MG/R2 : a À a0

(MGa0)1/2/R : a ¿ a0
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Independent Kepler-like laws in galaxies

• Asymptotic constancy of orbital velocity: V (r) → V∞

• The velocity mass relation: V 4
∞ = MGa0

• σ4 ∼ MGa0 relation (“isothermal” spheres, deep MOND virial relation)

• Discrepancy appears always at V 2/R = a0

• Isothermal spheres have surface densities Σ̄ . a0/G

• The central surface density of “dark halos” is ≈ a0/2πG

• Disc galaxies have a disc AND a spherical “DM” components

• Scale invariance (+a0) → Nonlinearity → External-field effect (EFE)

• Full rotation curves from baryon distribution alone
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Test of the mass-asymptotic-speed
prediction–McGaugh 2011
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Rotation Curves of Disc Galaxies
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from Sanders and McGaugh 2002
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From Sanders and Noordermeer (2007). The grey shaded bands give the allowed range due to inclination

uncertainties. The thin green (grey) line gives the Newtonian sum of the individual components. The bold blue

(grey) lines gives the total MOND rotation curve
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a0 =?
a0 can be derived in several independent ways:

a0 ≈ 1.2× 10−8 cm s−2

• ā0 ≡ 2πa0 ≈ cH̄0

• ā0 ≈ c(Λ/3)1/2

A low acceleration black hole RS À RHubble
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All is not roses

• Galaxy clusters

Sanders 1999

Clowe et al. 2006

• Cosmological DM
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Nonrelativistic theories
Newtonian dynamics: a = −~∇φ ~∇ · [~∇φ] = 4πGρ

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Modified gravity: a = −~∇φ ~∇ · [µ(|
~∇φ|
a0

)~∇φ] = 4πGρ

Modified inertia: A[{r(t)}, a0] = −~∇φ ~∇· [~∇φ] = 4πGρ

Conformal invariance

Limits of relativistic theories
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QUMOND

L = − 1
8πG

{2~∇φ · ~∇φ∗ − a2
0Q[(~∇φ∗/a0)2]}+ ρ(

1
2
v2 − φ)

∆φ∗ = 4πGρ, ∆φ = ~∇ · [ν(|~∇φ∗|/a0)~∇φ∗]
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Relativistic theories

• Tensor-Vector-Scalar Gravity (TeVeS–Bekenstein 2004, after Sanders 1997)
Gravity is described by gαβ, Uα, φ: g̃αβ = e−2φ(gαβ+UαUβ)−e2φUαUβ

Reproduces NR modified gravity on galactic scales (a0 ∝ kk̂−1/2). Lensing:
Similar to the GR result with modified potential Cosmology and structure
formation: preliminary work (Dodelson and Liguori, Skordis et al.) CMB:
preliminary work: has potential to mimic aspects of cosmological DM (Skordis
et al.).

• MOND adaptations of Aether theories (Zlosnik, Ferreira, & Starkman 2007 )

L(A, g) =
a2
0

16πG
F(K) + λ(AµAµ + 1), (1)

where
K = a−2

0 Kαβ
γσAγ

;αAσ
;β. (2)

Kαβ
γσ = c1g

αβgγσ + c2δ
α
γ δβ

σ + c3δ
α
σδβ

γ + c4A
αAβgγσ,
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• Galileon k-mouflage MOND adaptation (Babichev, Deffayet, & Esposito-Farese
2011)

Also a tensor-vector-scalar theory. Said to improve on TeVeS in various regards
(e.g., small enough departures from GR in high-acceleration environments)

• Nonlocal metric MOND theories (Soussa & Woodard 2003; Deffayet, Esposito-
Farese, & Woodard 2011) Pure metric, but highly nonlocal in that they involve
F (¤).
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BIMOND

I = IEH + IM + ÎEH + ÎM + IInt

I = − 1
16πG

∫
[βg1/2R+αĝ1/2R̂−2(gĝ)1/4a2

0M]d4x+IM(gµν, ψi)+ÎM(ĝµν, χi)

M a dimensionless scalar a function of (quadratic) scalars of

a−1
0 Cα

βγ, Cα
βγ = Γα

βγ − Γ̂α
βγ

Υµν = Cγ
µλCλ

νγ − Cγ
µνC

λ
λγ

Υ = gµνΥµν, Υ̂ = ˆgµνΥµν
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Limits (for β = 1)

• The high-acceleration limit

M→M(∞) = const : we get GR with a CC ∝ a2
0M(∞)

Implications for the solar system, binary pulsar, etc.

• Metric equality: GR with a CC: Λ ∼M(0)a2
0

For example, a double Schwarzschild solution
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Nonrelativistic limit
Assume a symmetric cosmology; then locally

gµν = ηµν − 2φδµν + hµν, ĝµν = ηµν − 2φ̂δµν + ĥµν

With Υ, Ῡ field equations give hµν = ĥµν = 0

φ =
1
2
φ̃ + φ̄, φ̂ =

1
2
φ̃− φ̄

∆φ̃ = 4πG(ρ + ρ̂), ~∇ · {µ̃(|~∇φ̄|/a0)~∇φ̄} = 4πG(ρ− ρ̂)

Space conformal invariance in the deep-MOND limit
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Matter-Twin matter interactions

• No MOND for ρ = ρ̂

• Full MOND when ρ̂ = 0

• No interaction in Newtonian regime for β = 1 [µ̃(∞) = 2]: φ = φN , φ̂ = φ̂N

• Repulsion in the MOND regime

• Light bending as in GR, but with the MOND potential

• No strong lensing by TM; acts as diverging lens in the MOND regime
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“Microscopic” approaches

• DM with novel, unexpected properties, that may behave as dictated by MOND:

. Polarized dark medium (Blanchet 2007, Blanchet & Le Tiec 2009)

. Novel baryon-DM interactions (Bruneton & al. 2008)

. Dark Fluid (Zhao 2008)

• Entropic effect (Verlinde): (Klinkhamer & Kopp 2011, Pikhitsa Ho & al. 2010,
Li & Chang 2010), others

• Vacuum effects (Milgrom 1999 )

• Membranes with gravitational DoF extra coordinates (Milgrom 2002)

• Horava gravity (Romero & al. 2010), Sanders (2011), Blanchet & Marsat
(2011)
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Modified inertia

• No complete theory of MI yet, but an important viable option for MOND

• Has to be nonlocal (in time); plus nonlinearity inherent in MOND

• beyond the basic “Kepler” laws can give very different MOND predictions (e.g.,
on the EFE, solar system, etc.)

• General result for rotation curves: aµ(a/a0) = −∂φN/∂r

Easy to construct nonlocal, linear, causal theories that hinge on a frequency:

a(t) =
∫∞
−∞L(t− t′)f(t′)dt′, â(ω) = L̂(ω)f̂(ω), L(t < 0) = 0
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A toy theory

A(ω) ≡ 2−1/2

∫ |ω|

−|ω|
|â(ω′)|dω′ = 21/2

∫ |ω|

0

|â(ω′)|dω′

A(ω)µ[A(ω)/a0] = AN(ω)

• Acausal. Conservation laws?

• Solutions for linear and harmonic problems

• Good initial value problem

• Center of mass motion

• EFE, Oort problem

• Pioneer anomaly
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possible connection with the asymptotic de
Sitter geometry of our universe

If cosmic acceleration is due to cosmological constant, Λ, our universe is
asymptotically de Sitter of radius Rds = c(Λ/3)−1/2

The symmetry group of dS space time, SO(4, 1), is isomorphic to the conformal
group in 3-D Euclidean space, or on the boundary of the dS (two S3s)

Connection with deep MOND:

ā0 ≈ c2/Rds

SO(4, 1) is the symmetry of the MOND limit nonlinear Poisson equation

The symmetry is broken in the actual cosmos: does deep MOND prevail in local
physics in an exact dS cosmos??
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What is behind the phenomenological
success of MOND?

• DM?

. DM distribution is determined from that of the baryons.

. But DM to baryon ratio varies greatly and also differs from cosmological
value.

. It is inconceivable that CDM will ever explain MOND: for individual galax-
ies the outcome depends on the unknown history of formation, interac-
tions/mergers, ejection of most baryons, etc..

22



Summary

• MOND is a paradigm still under construction that replaces DM with new
physics (or novel DM) at accelerations below a0 ∼ cH0 ∼ cΛ1/2.

• Strongly anchored in symmetry (NR space-time scaling, de Sitter symmetry)

• Several theoretical directions; can differ greatly on second-rank predictions
(e.g., EFE, solar system)

• There are some important things that it was not yet shown with certainty to
do (e.g. replacing cosmological DM–some preliminary work).

• Still, it does a lot, and it does it extremely well.

• Rather inconceivable that MOND phenomenology can be explained as some
organizing principle for CDM.
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