

2264-3

Workshop on Infrared Modifications of Gravity

26 - 30 September 2011

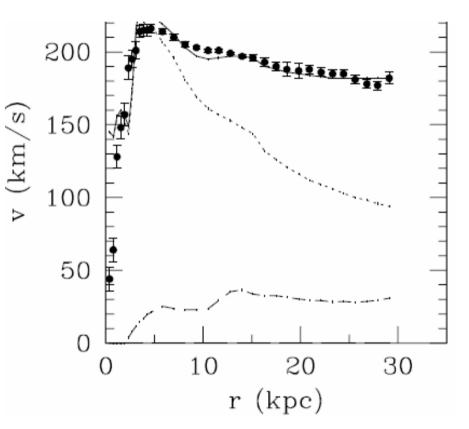
Nonlocal metric formulations of MOND with sufficient lensing

R. Woodard University of Florida U.S.A.

arXiv:1106.4989 Cedric Deffayet (APC, Paris) Gilles Esposito-Farese (IAP, Paris)

Dark Matter vs Mod. Gravity

- $G_{\mu\nu} = 8\pi GT_{\mu\nu}$ works for solar system
- But not for galaxies
- Theory: $v^2 = GM/r$
- Obser: v² ~ (a₀GM)^{1/2}
- Maybe missing Mass
- Or modified gravity



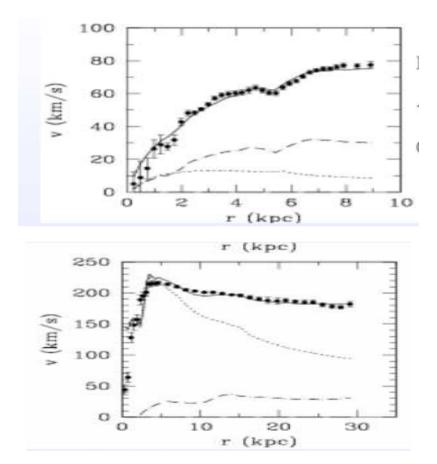
MOND (Milgrom 1983)

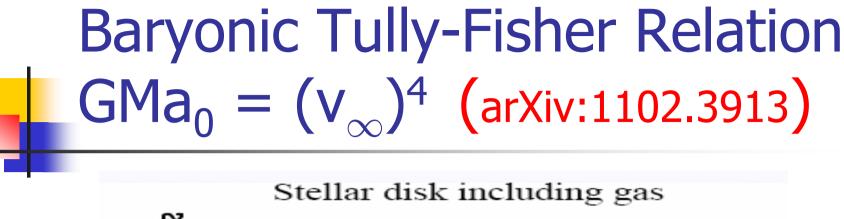
- $\rho(x,y,z) \equiv mass in stars and gas$ • $g_N^i \equiv Newtonian acceleration$
- $g^i \equiv actual acceleration$
 - → $g^i \mu(|g|/a_0) = g_N^i$
- $a_0 \sim 10^{\text{-10}} \text{ m/s}^2$
- GR regime: µ(x) = 1 for x >> 1
- MOND regime: $\mu(\mathbf{x}) = \mathbf{x}$ for $\mathbf{x} << 1$

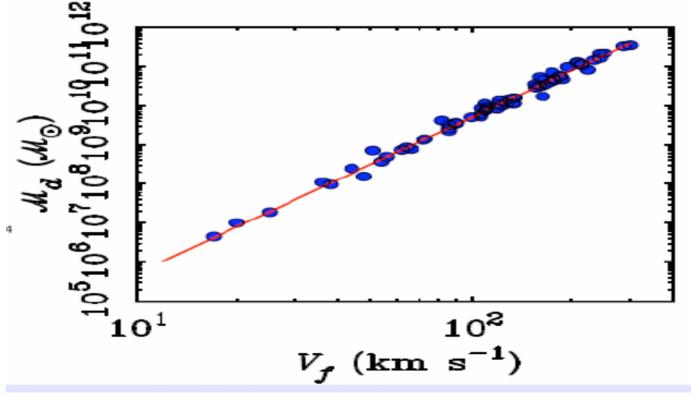
 \Rightarrow Eg. $\mu(x) = x/(1+x)$, or tanh(x), . . .

MOND Successes for Rotationally Supported Systems

- Asymp. flat curves
- Milgrom's Law: need dark mat. for $g \sim a_0$
- Freeman's: ∑<a₀/G</p>
- Sancisi's: bumps trace baryons
 cf. NCG 1560 (LSB)
 & NGC 2903 (HSB)







Breathe-taking . . . but need relativistic model for

- Gravitational Lensing
- Recently disturbed systems
 - The Bullet Cluster!
- Cosmology
- Previous models have new fields
 - TeVeS (Bekenstein 2004)
 - Another form of dark matter?

Our Goal: A purely metric version

Metric potentials for static, spherically symmetric

ds² = -B(r)c²dt² + A(r)dr² + r²dΩ²
b(r) = B(r) - 1 → Rotation curves
rb'(r) = 2v²/c² → [4GMa₀/c⁴]^{1/2}
a(r) = A(r) - 1 → Lensing
Data → a(r) ~ + rb'(r)

GR vs MOND for a MONDian ρ(r)

M(r) = 4π/c² ∫^r dr' r'²ρ(r')
MONDian → GM(r)/r² « a₀
GR → a(r) = rb'(r) = 2GM(r)/c²r
δS_{GR}/δb = (c⁴/16πG)[(ra)' + O(h²)] - ¹/₂r²ρ
δS_{GR}/δa = (c⁴/16πG)[-rb' + a + O(h²)]
MOND → a(r) = rb'(r) = [4GM(r)a₀/c⁴]^{1/2}
∂_r(a²) = ∂_r(rb')² = (16πGa₀/c⁴) r²ρ

\mathcal{L}_{MOND} to cancel h² from GR & add h³ for MOND

 $\mathcal{L}_{GR} = -\frac{1}{2}r^{2}\rho b + (c^{4}/16\pi G)[-ab' + \frac{1}{2}a^{2}]$ $\mathcal{L}_{MOND} = r^{2}(c^{4}/16\pi G)[ab'/r - \frac{1}{2}(a/r)^{2}$ $+ c^{2}/a_{0}[-1/6 (b')^{3} + k(b' - a/r)^{3} + ...]$ $+ h^{3}/r^{2} of GR \ll c^{2}/a_{0} (h/r)^{3} of MOND for r \ll r_{H}$ $h^{3}/r^{2} of GR \ll c^{2}/a_{0} (h/r)^{3} of MOND for r \ll r_{H}$ $S = \int dr [\mathcal{L}_{GR} + \mathcal{L}_{MOND}]$ $+ \partial_{r}(rb')^{2} - 6k\partial_{r}(rb'-a)^{2} = (16\pi Ga_{0}/c^{4}) r^{2}\rho$ $- 6k/r (rb'-a)^{2} = 0$

No Local Model

- Abstractions: a ~ b ~ h & h/r ~ h'
- $\mathcal{L}_{MOND} \sim r^2 (c^4/16\pi G)[(h')^2 + c^2/a_0 (h')^3]$
 - Problem is the cubic term
 - An odd # of ∂_r 's
- All curvatures $\sim h'' + O(h'^2)$
 - Only even # of ∂_r 's
 - No way to act odd # of extra ∂_r 's

Nonlocality removes ∂'s

□ = (-g)^{-1/2} ∂_µ(√-g g^{µν} ∂_ν)
F = □⁻¹f → F = □f (retarded BC)
F(r) = -∫_rdr'/r'²(A/B)^{1/2}∫^{r'}dr''r''²(AB)^{1/2}f
Eg R = (r)⁻² ∂_r[-r²b' + 2ra] + O(h'²)
□⁻¹R = ∫_rdr'[b' - 2a/r'] + O(h²)
g^{µν}∂_µ(□⁻¹R)∂_ν(□⁻¹R) = (b'-2a/r)² + O(hh'²)

Was Newton wrong about action-at-a-distance?

- We don't think so
 - Fundamental theory is local
 - But quantum effective field eqns are not
 - M=0 loops could give big IR corrections
- - N(t,k) ~ [Ha(t)/2kc]² for every k
 - Perhaps their attraction stops inflation
 - Perhaps MOND is from vacuum polarization

A Nonlocal 4-Velocity Field

• $\mathcal{V}[g](x) = inv.$ volume past l-cone of x^{μ}

- To finite time initial value surface
- Guaranteed to grow in timelike direction

•
$$u^{\mu}[g](x) = -g^{\mu\nu}\partial_{\nu}\mathcal{V}/[-g^{\alpha\beta}\partial_{\alpha}\mathcal{V}\partial_{\beta}\mathcal{V}]^{1/2}$$

- Static, spherical \rightarrow u^{μ} = δ^{μ}_{o}/B
- The TeVeS vector without a real vector
- $R_{\mu\nu}u^{\mu}u^{\nu}$ → $\frac{1}{2}b'' + \frac{b'}{r} + O(h'^2)$

A class of models based on two scalars

X[g] = g^{µν}[∂_µ□⁻¹(R_{αβ}u^αu^β-1/2R)] x [∂_ν□⁻¹(R_{ρσ}u^ρu^σ-1/2R)] → (b'-a/r)²
Y[g] = g^{µν}[∂_µ□⁻¹(2R_{αβ}u^αu^β)] x [∂_ν□⁻¹(2R_{ρσ}u^ρu^σ)] → b'²
L_{MOND} = (c⁴/16πG) √-g [1/2 (-X + Y) + c²/6a₀ (X^{3/2} - Y^{3/2}) + ...]

Dimensionless variables

■ x[g] = $c^2/3a_0 \sqrt{|X[g]|} \rightarrow c^2/3a_0 |b'-a/r|$ x = 0 for GR in empty space ■ $y[g] = c^2/3a_0 \sqrt{|Y[g]|} \rightarrow c^2/3a_0 |b'|$ y is large for GR & small for MOND • $\mathcal{L}_{MOND} = 9a_0^2/32\pi G [-x^2+y^2+x^3-y^3+...]\sqrt{-g}$ Not necessary to cancel the x² term • $\mathcal{L}_{MOND} = 9a_0^2/32\pi G y^2 e^{-y} \sqrt{-g}$ seems ok • $3a_0/c^2 \rightarrow D_{\mu}u^{\mu}$ for cosmology

Conclusions

- MOND superb for static structures
- But needs a relativistic generalization
 - Could add new fields
 - We use only $g_{\mu\nu}$
- Force law & lensing fix MONDian eqns
- No local model but many nonlocal ones
 - Some are even pretty!

Open Questions

- Stability
 - New DOF
 - $\mathcal{L}_{MOND} \sim h^3$
- Cosmology (Costas Skordis)
- MOND problems
 - Bullet cluster
 - Cluster cores
- Deriving $\mathcal{L}_{\text{MOND}}$ from fundamental theory