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Cosmology and GR limit of
Horava-Lifshitz gravity

Shinji Mukohyama
(IPMU, U of Tokyo)

ref. Horava-Lifshitz Cosmology: A Review, arXiv: 1007.5199
also arXiv: 1105.0246 with K.lzumi
arxiv: 1109.2609 with E.Gumrukcuoglu & A.Wang
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e Scaling dim of ¢
t 2bt ( )
X 2> b X

 Renormalizabllity

e Gravity Is highly non-
1+3-2+2s =0 linear and thus non-
renormalizable
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* Anisotropic scaling

t >b7t ( ) « Forz=3,
X =2 b X

are
2+3-22+2s =0 renormalizable!

s =-(3-2)/2 « Gravity becomes
renormalizable!?




The z=3 scaling solves the horizon problem and
leads to scale-invariant cosmological perturbations
without inflation (Mukohyama 2009).

New mechanism for generation of primordial
magnetic seed field (S.Maeda, Mukohyama,
Shiromizu 2009).

Higher curvature terms lead to
(Calcagni 2009, Brandenberger 2009).

Higher curvature terms (1/a°, 1/a*) might make the
(Kiritsis&Kofinas 2009).

Absence of local Hamiltonian constraint leads to
DM as integration “constant” (Mukohyama 2009).




Scale-invariant cosmological
perturbations from Horava-
Lifshitz gravity without inflation

arXiv:0904.2190 [hep-th]

c.f. Basic mechanism is shared with “Primordial magnetic field from non-
Inflationary cosmic expansion in Horava-Lifshitz gravity”, arXiv:0909.2149
[astro-th.CO] with S.Maeda and T.Shiromizu.




¢ ®?>>H?2: oscillate H = (da/dt) / a
w? << H? : freeze a : scale factor

o’ =k?/a? leads to d?a/dt* > O
Generation of super-horizon fluctuations requires

accelerated expansion, I.e. inflation.

e Scaling law
t 2bt ( )

x > b x )

Scale-invariance requires almost const. H, I.e.
Inflation.




Mukohyama 2009

®? =M-kb/a® leads to d?(a3)/dt> > 0
OK for a~tP with p > 1/3

e Scaling law
t 2 b3t ( )

X =2 bx

=)

Scale-invariant fluctuations!







Dark matter as integration constant
In Horava-Lifshitz gravity

arXiv:0905.3563 [hep-th]

See also arXiv:0906.5069 [hep-th]
Caustic avoidance in Horava-Lifshitz gravity




Foliation-preserving diffeomorphism

= 3D spatial diffeomorphism
+

3 local constraints + 1 global constraint

= 3 momentum @ each time @ each point
_|_

Constraints are preserved by dynamical
equations.

We can solve dynamical equations, provided
that constraints are satisfied at initial time.




o Approximates overall behavior of our patch
of the universe inside the Hubble horizon.

e No “local’” Hamiltonian constraint
E.o.m. of matter
-> conservation eq.

 Dynamical eq
can be integrated to give

1}
pi—|—36(Pi‘|‘Pz}) =0




 Horava-Lifshitz gravity is power-counting renormalizable
and can be a candidate theory of quantum gravity.

 The z=3 scaling and leads to scale-
Invariant cosmological perturbations for a~tP with p>1/3.

HL gravity does NOT recover GR at low-E but can instead
mimic GR+DM:

Constraint algebra is smaller than GR since the time slicing
and the “dark matter” rest frame are synchronized.




, power-counting renormalizability
11 RG flow

. seems torecover GRIff L 2> 1

kinetic term
A

| Ndt/gd x(K K — M<2+c R—2A)
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e (6+3)—-3-3=3
gi - 6 components
N': 3 components
X'2>X'(t,x) : 3 gauge d.o.f.

SI/8N'=0 : 3 constraints

e 3=2+1
tensor graviton: 2 d.o.f.
scalar graviton: 1 d.o.f.




Perturbative vs non-perturbative
regimes

N=1, N;=0;B+n;, ¢gij= a’esT (eh)z.j

(r=0(q), hij =0(g), B=0(q"), n;=0(q")

Momentum constraint

_ O(1)
O(1-1)+0(q)
* Perturbative regime: q << (A-1)
breakdown in the A = 1 limit

* Non-perturbative regime: (A-1) << g<<1
responsible for recovery of GR

Oy




» Spherically symmetric, static ansatz
N =1, Ngdx'=B(z)dz, gydr'de’ =dz®+ r(z)*dQs
& R =%/, without z>1 terms
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e Two branches
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B’ 1++1+44B
B 2A
(A —1)R
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ANR' RR BA-—1)B2+(\—-1)
o (3N-1)p? << (A-1)
perturbative regime, 1/r expansion

. (3A-1)B2 >> (A-1)

non-perturvative regime, recovery of GR
* (31-1)p? ~ (A-1) with B2~r /r >
analogue of Vainshtein radius

dynamical

® -~

lzumi & Mukohyama 2009
“Steller center is dynamical”




arXiv: 1105.0246 [hep-th] with K.Izumi
arXiv: 1109.2609 [hep-th] with E.Gumruhcuglu & A.Wang

 Flat FRW background driven by “DM as an
iIntegration constant” + a scalar field

iIn HL gravity with a scalar field (matter)
o Gradient expansion up to any order
 Regular and continuous in the A =2 1 limit




Horava-Lifshitz gravity is power-counting renormalizable and can be a
candidate theory of quantum gravity.

The z=3 scaling and leads to scale-invariant
cosmological perturbations for a~tP with p>1/3.

HL gravity does NOT recover GR at low-E but can instead mimic GR+DM:
Constraint algebra is smaller than
GR since the time slicing and the “dark matter” rest frame are

synchronized.

HL gravity in the A->1 limit exhibits

GR+DM Is recovered non-
perturbatively at least iIn some simple cases.
1. spherically-symmetric, static, vacuum
configurations
2. superhorizon cosmological perturbations




Backup slides
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e Looks like GR Iff A = 1. So, we assume that
A =1Is an IR fixed point of RG flow.

/dgas\/_ + Agu) — 8nGNT,,)n"n” =0

1 .
n,dxt = —Ndt, ntd, = ﬁ(c')t — N'0;)

« Momentum constraint & dynamical eg
(G + Mgl — 871G Ty )" =0

(/

G + Agl) — 8nGNT;; = 0
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Def. TH- | G) + Ag

General solution to the momentum
constraint and dynamical eq.
Tﬁf’ = ptn,n, n*V,n,=0

Global Hamiltonian constraint

/dga:\/ngL =0

Bianchi identity = (non-)conservation eq

0, pt + Kp"t = n“V*I,,






