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Outline

• Glimpse of Ho!ava gravity: low energy (khronon)

• Black holes: solution in the decoupled limit

• Universal horizon vs. instantaneous interaction 

• No-hair and instabilities: no real BH

• Conclusions and Outlook



UV completion
Toy-model: perturbative behavior
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• Different power counting in UV than in IR BUT always works.
The low-energy dimensionfull calculations are cut-off by M∗:
No obvious problem with naturalness if M∗ < MP .

interaction/free

never leaving perturbative
QFT (always weak)

Hořava Gravity

dh = 0

dh = 1



ds2 = gµνdx
µdxν = N2dt2 − γij(dx

i +N idt)(dxj +N jdt)

•  Breaking Lorentz invariance: Broken Diffeom.

xi �→ x̃i(xj , t)

t = t1

t = t0
xi

New invariance: foliation preserving Diffeom.

t → t̃(t)

Absolute time and space intervals

Hořava Gravity



Hořava Gravity

Healthy extension

Low energy
High energy 
(Renormalizable)

GR:

ds2 = gµνdx
µdxν = N2dt2 − γij(dx

i +N idt)(dxj +N jdt)
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Hořava Gravity: Covariant Form
• The same physics described by

t̄ = (1, 0, 0, 0) = ∂µt uµ ≡ ∂µϕ√
∂αϕ∂αϕ

xµ
ϕ = ϕ0

ϕ = ϕ1

L = LEH +
√
−g

�
(∇µuµ)

2 + (uν∇νuµ)
2 + ∇µuν∇νuµ

�

E < M�

Scalar-tensor theory similar to Einstein-Aether!
ϕ gµν uµu

µ = 1

λ α β

Low energy

Cut-off scale Λ ∼ MP
√
α

KHRONON

+ extra term
> M∗ > 1010 GeV

ϕ �→ f(ϕ)



Identical to GR at PN!α = 2β

Hořava Gravity: Constraints
Assumption: Matter universally coupled to 
(no L-violation, WEP-violation in matter sector)
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No Gravitational Cerenkov: c2t > 1, c2s > 1

Hořava Gravity: Constraints II

Homogeneous cosmology

GN/Gc = 1 +O(10−2)BBN

GN/Gc = 1 +O(α)

Detour  Adding a dilaton: 
naturally small cosmological dark energy!! 

       Interesting phenom. as compared with ΛCDM

arXiv:1104.3579, JCAP 

No ghosts or tachyons  0 < α < 2



Radiation damping in binaries
gravitational waves

Figure 7: Plot of the cumulative shift of the periastron time from 1975–2005. The points are data,
the curve is the GR prediction. The gap during the middle 1990s was caused by a closure of Arecibo
for upgrading [272].

the evidence suggests that the pulsar beam may precess out of our line of sight by 2025.

5.2 A zoo of binary pulsars

Nine relativistic binary neutron star systems with orbital periods less than a day are now known.
While some are less interesting for testing relativity, some have yielded interesting tests, and
others, notably the recently discovered “double pulsar” are likely to produce significant results in
the future. Here we describe some of the more interesting or best studied cases; the parameters of
the first four are listed in Table 7.

B1534+12. This is a binary pulsar system in our galaxy [246, 245, 20]. Its pulses are significantly
stronger and narrower than those of B1913+16, so timing measurements are more precise,
reaching 3 µs accuracy. The orbital plane appears to be almost edge-on relative to the line
of sight (i ! 80◦); as a result the Shapiro delay is substantial, and separate values of the
parameters r and s have been obtained with interesting accuracy. Assuming GR, one infers
that the two masses are m1 = 1.335 ± 0.002M" and m2 = 1.344 ± 0.002M". The rate of
orbit decay Ṗb agrees with GR to about 15 percent, but the precision is limited by the poorly
known distance to the pulsar, which introduces a significant uncertainty into the subtraction
of galactic acceleration. Independently of Ṗb, measurement of the four other post-Keplerian
parameters gives two tests of strong-field gravity in the non-radiative regime [254].

B2127+11C. This system appears to be a clone of the Hulse-Taylor binary pulsar, with very
similar values for orbital period and eccentricity (see Table 7). The inferred total mass of
the system is 2.706±0.011M". But because the system is in the globular cluster M15 (NGC
7078), it suffers Doppler shifts resulting from local accelerations, either by the mean cluster
gravitational field or by nearby stars, that are more difficult to estimate than was the case
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Ė = −GN

�
A

5
(
...
I ij)

2+B(
...
I kk)

2

�

Iij =

�
d4x ρ

�
xixj − 1

3
δijx

kxk

�

O(.01)Bounds

Hořava Gravity: GWs

A = 1 +O(α)

B = O(α)

Quadrupole:
Monopole:



Hořava Gravity

Interesting and motivated theory of modified gravity
(in the IR and UV)

Healthy extension:
passes all consistency and phenomenological 
tests and provides interesting cosmological scenarios 

beyond GR
(even with natural DE)



Black holes

Motivations

• Exploring strong fields regime

• BH thermodynamics

Low energy

• Possible avoidance of singularities

High energy
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Instantaneous propagation

A solution is Minkowski with 

For small perturbations for the khronon ϕ = t+ χ

Gret
ij (x) ⊃ θ(t)θ(|x|− cχt)

4πα

�
3xixj − δij |x|2

|x|5

�
t

Ssource =

�
d4x

√
−g Sµuµ

Instantaneous propagation along surfaces of constant 

ϕ̄ = t

ϕ̄

Are black holes possible at all?   YES! 
One needs to find    in realistic backgroundsϕ̄

cχ ≡ β + λ

α



Black holes: our approach

L = LEH +
√
−g

�
(∇µuµ)

2 + (uν∇νuµ)
2 + ∇µuν∇νuµ

�

E < M�

λ α β

Low energy

• Limit Tϕ
µν ∼ 0

• Static, spherically symmetric

ϕ field equation in Schwarzschild gµν

Also solutions for Einstein-aether! uµ ≡ ∂µϕ√
∂αϕ∂αϕ

Note

λ, ξ,α � 1



u2
t (1− c2χ)− 1 + ξc = 0

Black holes: finding solutions

• Single ODE for    :  new variableut

u��
t +

c2χut

u2
t (1− c2χ)− 1 + ξ

F (ut, u
�
t)

• Boundary conditions: 

ξ ≡ rs
r

ut(ξ = 0) = 1

• Sound horizon    :ξc

F (ut, u
�
t)
��
ξ=ξc

= 0
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Black holes: finding solutions

ut = 0

ξ�
ϕ(ξ) ≈ log (ξ� − ξ)

UNIVERSAL HORIZON

• In our approach: existence of     can be shown analytically  ξ�

Agreement with Barausse, Jacobson, Sotiriou



φ

i+

i0ϕ
ξ = ξ�

• Even the instantaneous interactions present horizons! 

Universal horizon

• Similar to Cauchy horizon:  two regions for b.c.

Problems of information still present!

ϕ → −∞

ϕ → ∞

No singular behaviour
ϕ(ξ) ≈ log (ξ� − ξ)



Absence of hair

• Perturbations around the background

ϕ = ϕ̄+ χ

• Static case:

   Imposing regularity at    , the sound horizon and 
   universal horizon

i0

χ(ξ) = 0

Method:  
i) Counting b.c. versus free parameters
ii) Solving for large angular momentum 

NO HAIR!



Instabilities

• Time dependent perturbations (large  ) 

! Stable ingoing and outgoing waves in Schwarzschild

! Instantaneous mode (absent in Einstein-aether)

χ(t, ξ)l ∝ |ξ − ξ�|γ+f(t)

Non-analytic power!

(uµ∂µ)
l χ diverges at    for big enough l
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Real causal structure

ξ = ξ�

?

φϕ i0

i+

Physically: perturbations pile up creating a
huge backreaction (singularity of the low-energy)

Cauchy
Horizons

UV resolution



Low-energy Ho!ava gravity has NO physical black holes:

             Solutions with universal horizon are unstable

(not for Einstein-aether!)

        The instantaneous modes can probe the whole geometry

 We expect this to be generic (as for Cauchy horizons in GR)

The physical solution has a geometry very different from GR 
inside (but close to) the Schwarzschild radius.  

OUTLOOK

 Thermodynamics.  Are these modes enough? How is Hawking 
radiation modified in this picture? 

Conclusions



No Singularities?
NO MINIMAL LENGTH (?)

CHANDRASEKHAR LIMIT (?)
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