

2264-6

Workshop on Infrared Modifications of Gravity

26 - 30 September 2011

On the existence of black holes in Horava gravity

D. Blas *EPFL* Switzerland

Are there black holes in Hořava gravity?

Diego Blas

with Sergey Sibiryakov, arXiv:1109.xxxx

Outline

- Glimpse of Hořava gravity: low energy (khronon)
- Black holes: solution in the decoupled limit
- Universal horizon vs. instantaneous interaction
- No-hair and instabilities: no real BH
- Conclusions and Outlook

UV completion never leaving perturbative QFT (always weak)

Breaking Lorentz invariance: Broken Diffeom.
 New invariance: foliation preserving Diffeom.

$$ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} = N^{2}dt^{2} - \gamma_{ij}(dx^{i} + N^{i}dt)(dx^{j} + N^{j}dt)$$
$$K_{ij} \sim \frac{\partial\gamma_{ij}}{\partial t} \sim \omega\gamma_{ij} \qquad {}^{(3)}R^{i}{}_{jkl} \sim k^{2}\gamma_{ij} \qquad \frac{\partial N}{\partial x^{i}} \sim k_{i}N$$

Healthy extension.

$$\mathcal{L} = M_P^2 N \sqrt{\gamma} \left(\underbrace{K_{ij} K^{ij} - \lambda' (\gamma_{ij} K^{ij})^2}_{\partial_0^2} - \xi'^{(3)} R - \alpha' (\partial_i \log(N))^2 + \underbrace{Low \ energy}_{d_0^2} \\ d_h = 0 \end{aligned} \begin{array}{l} \text{High \ energy}_{(\text{Renormalizable})} \dots + \frac{\Delta^{2(3)} R}{M_\star^4} \end{array} \right)$$
$$\text{GR: } \lambda' = \xi' = 1, \quad \alpha' = 0 \qquad \qquad \omega^2 - k^2 - k^6 / M_\star^4 \end{array}$$

Scalar-tensor theory similar to Einstein-Aether! $\varphi \qquad g_{\mu\nu} \qquad \qquad u_{\mu}u^{\mu} = 1 + \text{extra term}$ Cut-off scale $\Lambda \sim M_P \sqrt{\alpha} > M_* > 10^{10} \text{ GeV}$

Hořava Gravity: Constraints

Assumption: Matter universally coupled to $g_{\mu\nu}$ (no L-violation, WEP-violation in matter sector)

Hořava Gravity: Constraints II

No Gravitational Cerenkov: $c_t^2 > 1, c_s^2 > 1$

No ghosts or tachyons $0 < \alpha < 2$

Homogeneous cosmology $G_N/G_c = 1 + O(\alpha)$ BBN $G_N/G_c = 1 + O(10^{-2})$

Detour Adding a dilaton: naturally small cosmological dark energy!! Interesting phenom. as compared with ΛCDM

arXiv:1104.3579, JCAP

Interesting and motivated theory of modified gravity (in the IR and UV)

Healthy extension:

passes all **consistency** and **phenomenological** tests and provides interesting cosmological scenarios beyond GR (even with natural DE)

Black holes

Motivations

- Exploring strong fields regime
- BH thermodynamics

High energy

• Possible avoidance of singularities

Black holes

Motivations

- Exploring strong fields regime
- BH thermodynamics

High energy

• Possible avoidance of singularities

Instantaneous propagation

A solution is Minkowski with $\bar{\varphi} = t$

For small perturbations for the khronon $\varphi = t + \chi$

$$S_{source} = \int d^4 x \sqrt{-g} \, S^{\mu} u_{\mu} \qquad c_{\chi} \equiv \frac{\beta + \lambda}{\alpha}$$
$$G_{ij}^{ret}(x) \supset \frac{\theta(t)\theta(|\mathbf{x}| - c_{\chi}t)}{4\pi\alpha} \left(\frac{3\mathbf{x}_i \mathbf{x}_j - \delta_{ij} |\mathbf{x}|^2}{|\mathbf{x}|^5}\right) t$$

Instantaneous propagation along surfaces of constant $ar{arphi}$

Are black holes possible at all? **YES!** One needs to find $\overline{\varphi}$ in realistic backgrounds

Black holes: our approach

$$Low energy$$

$$\mathcal{L}_{E < M_{\star}} = \mathcal{L}_{EH} + \sqrt{-g} \left(\lambda (\nabla^{\mu} u_{\mu})^{2} + \alpha (u^{\nu} \nabla_{\nu} u_{\mu})^{2} + \beta \nabla_{\mu} u_{\nu} \nabla^{\nu} u^{\mu} \right)$$

- Limit $\lambda, \xi, \alpha \ll 1$ \longrightarrow $T^{\varphi}_{\mu\nu} \sim 0$
- Static, spherically symmetric

 φ field equation in Schwarzschild $g_{\mu\nu}$

Note Also solutions for Einstein-aether! $u_{\mu} \equiv \frac{\partial_{\mu} \varphi}{\sqrt{\partial_{\mu} (\rho \partial^{\alpha} \rho)}}$

Black holes: finding solutions

• Single ODE for u_t : new variable $\xi \equiv \frac{r_s}{r}$

$$u_t'' + \frac{c_{\chi}^2 u_t}{u_t^2 (1 - c_{\chi}^2) - 1 + \xi} F(u_t, u_t')$$

- Sound horizon ξ_c : $u_t^2(1 c_{\chi}^2) 1 + \xi_c = 0$
- Boundary conditions:

$$u_t(\xi = 0) = 1$$
$$F(u_t, u'_t)\big|_{\xi = \xi_c} = 0$$

Black holes: finding solutions

- Similar to Cauchy horizon: two regions for b.c.
- Even the instantaneous interactions present horizons! Problems of information still present!

Absence of hair

Perturbations around the background

$$\varphi = \bar{\varphi} + \chi$$

• Static case:

Imposing regularity at i_0 , the **sound** horizon and **universal** horizon

$$\chi(\xi) = 0$$
 NO HAIR!

Method:

- i) Counting b.c. versus free parameters
- ii) Solving for large angular momentum

Instabilities

- Time dependent perturbations (large *l*)
 - Stable ingoing and outgoing waves in Schwarzschild

$$\chi(t,\xi)_l^{\pm} \sim e^{i(\omega \pm \sqrt{l(l+1)/\xi})}$$

Instantaneous mode (absent in Einstein-aether)

Enters in the non-linear e.o.m.: physical singularity

Conclusions

Low-energy Hořava gravity has NO physical black holes: Solutions with universal horizon are unstable (not for Einstein-aether!)

The instantaneous modes can probe the whole geometry

- We expect this to be **generic** (as for Cauchy horizons in GR)
- The physical solution has a geometry very different from GR inside (but close to) the Schwarzschild radius.

OUTLOOK

* Thermodynamics. Are these modes enough? How is Hawking radiation modified in this picture?

No Singularities?

NO MINIMAL LENGTH (?)

$$\Delta x_H \sim \hbar / \Delta p$$

$$\Delta x_G \sim \Delta a t^2 \sim \partial_r \phi t^2 \sim G_N \Delta p \left(\frac{M_*}{\Delta p}\right)^6$$

 $\Delta x > \min(\Delta x_H, \Delta x_G)$

l_P for GR
No limit for Hořava

CHANDRASEKHAR LIMIT (?)

$$E_{K} \sim n r^{3} \frac{p^{3}}{M_{*}^{2}} \sim \frac{\hbar^{3} n^{2} r^{3}}{M_{*}^{2}} \sim \frac{\hbar^{3} M^{2}}{m^{2} r^{3} M_{*}^{2}} \longrightarrow \frac{1}{m^{3/2}} \left(\frac{\hbar^{3/2}}{m^{3/2}} - \frac{\hbar^{3/2}}{m^{3/2}} - \frac{\hbar^{3/2}}{r} \right) = \frac{1}{r^{3/2}} \left(\frac{\hbar^{3/2}}{mM_{*}G_{N}^{1/2}} - \frac{\hbar^{3/2}}{mM_{*}G_{N}^{1/2}} - \frac{\hbar^{3/2}}{mM_{*}G_{N}^{1/2}} \right)$$