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Dark Energy

* The acceleration of the expansion of the universe is
explained by a (slowly rolling) scalar field
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~ “Chameleon” particles




Outline

* Screening Mechanisms
e The Chameleon
e The Symmetron
e The Galileon

* Hunting in the Laboratory
e Parallel Plate Experiments
e Particle Colliders

e Atomic Precision Measurements
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The Chameleon

* The chameleon is a scalar field with non minimal couplings
to matter
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* This gives rise to an effective potential

Via(6) = V(@) + o8 (57

e Need self-interaction terms in the potential
e The mass of the field depends on the local density

(Khoury, Weltman 2004)5



The Chameleon
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The Symmetron

* Potential Coupling to matter
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The Galileon Model

* Galileon model

e Respects the symmetry
m(z) = w(x) + b,z + c.

e Equations of motion are second order in derivatives

* In four dimensions only five possible operators
5
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* Galileon action

(Nicolis, Rattazzi, Trincherini. 2008)
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The Vainshtein Effect

* Spherically symmetric, static equations of motion, near an
object of mass M
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* Force can be made substantially weaker than gravity if non-
linearities become important

dm(r)
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(Nicolis, Rattazzi, Trincherini. 2008)
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Eot-Wash

* Looks for deviations from Newtonian gravitational
potential

* Area of overlap changes as the plates are rotated

e Null experiment:
No force if only Newtonian

gravity present h )
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Eot-Wash: The Chameleon

* Only weak constraints on the chameleon

e Force due to thin shell object only weakly depends on

coupling strength
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Eot-Wash: The Galileon

* Have to expand around the background due to the Earth

() = mo(r) + ¢(2),
* No Vainshtein mechanism in a 1D system
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* Torque from beyond standard model physics
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Scalar Fields Couple to Gauge Bosons

* Conformally coupled scalar fields

; ¢
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e (Classically no coupling to kinetic terms of gauge bosons
* But quantisation and conformal rescaling do not commute!

* In a quantum theory we should always include a coupling
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Scalar fields at Colliders

* Effective Lagrangian

| |
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My
e Preserves that the Lagrangian descends from unbroken
su(2) x U(1) at high energies, and gauge boson masses from

spontaneous symmetry breaking

* Contributes
e New processes - scalar in final state
e Corrections to SM processes - scalar only in intermediate
state
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Scalar Bremsstrahlung

* Contribution to the width of Z decay
f /
f ¢

® Decayrate: T'(Z—off) 1 mj
0(Z— ff) 16z M2 %

* Width of the Z
e Prediction from the standard model r, — 24952 Qev

e Known from observation 1, = (2.4952 + 0.0023) GeV
* Dark Energy correction negligible if iz, > 10? Gev

L5



Corrections to Electroweak Processes
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Corrections to Electroweak Processes

* Leading order scalar effects occur as oblique corrections

¢
W=, Z, W=, Z, W=, Z, W=,Z,~
W*.Z  (a) (b)

¢

e The corrected propagator is

1
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Electroweak precision observables

* Constraints on scalar couplings from EW precision

observables at LEP
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Atomic precision measurements

* Perturbations of the scalar fields are sourced by
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e Nuclear electric field
e Density of the atomic nucleus -
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* Fermion masses are scalar field HYDROGEN

dependent 5 :
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* Leads to a perturbed Schrodinger

equation
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Atomic precision measurements

* Perturbs atomic energy levels
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* 1sigma uncertainty on the 1s to 2s transition in hydrogen of
order 109 eV

¢ Constrains: 10 TeV < M,
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Astrophysical Constraints

o)

M,

° Theinteraction - " pw

* Leads to mixing in magnetic fields vy _-——

* Changes the polarization and luminosity of
sources viewed through magnetic fields

e Constraints from observations of AGN
10" GeV < M,
(CB, Davis, Shaw. 2009)

e Laboratory searches not yet competitive
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Dark Energy in the Laboratory

* If the acceleration expansion of the universe is caused by a
scalar field it must couple to matter

e For linear theories gravitational strength couplings are
excluded by fifth force experiments

®* Nonlinear theories are ok!

¢ Best Constraints
10" GeV < M,

10 TeV < M,
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Electroweak precision observables

* The vacuum polarization for each boson is

.12
[Tga(k?) ~ a(k*)A? + b(E*) In ( jlp) + c(k?)
1 A

e These are sensitive to the cut off scale

* Leads to Log divergences in observables

e Typically differences of the wavefunction renormalisation of
different bosons, or bosons at different momenta
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The Chameleon

* Thin shell suppression of forces

e The chameleon force sourced by a massive body
is produced only by a thin shell near the surface

& — Mj% AR (r—R)

. (Khoury, Weltman 2004)
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Lunar Laser Ranging Constraints

* Assuming ¢ < Mjp

* Lunar Laser Ranging bounds on the precession of
the perihelion of the moon 5,/ _ 5, 1o

e Galileon
Jl fg?‘z

5o =
7T M,

{QW:B + TW:{: ) | Moon

.If C4:0, 65:{:}

10120 < ¢y
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The Galileon Model

*Cl =T
I
Lo= — §dﬁ - O
1 = i
£y = — S(On)or - o I, = o"o,m
1
Ly= — 1[(|:I7r)25ﬂ' O —2(0m)or - 11 - O
— (- T)(d7 - Ox) + 207 - 1111 - 7]
Ly= — %[(I:I?r)gc’%r - Or — 3(0Or)?*0r - I - O — 30x (11 - IT) (97 - Ox)
]

+6(0m)om - 1L - 11 - O + 2(IT- I1 - IT) (07 - Omr)
+ 3(IL- 1)dr - I - O — 607 - 11 - 11 - 11 - O7]

(Nicolis, Rattazzi, Trincherini. 2008)
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Screening Mechanisims: Summary

* Non-linear terms dominate in regions of high density
* This changes

e The vacuum and the mass (chameleon)
e The coupling strength (Galileon)

* No UV completion of the chameleon

* Galileon shown to arise from
e DGP (Dvali, Gabadadze, Porrati. 2000)

e Probe brane world scenarios (de Rham: Tolley: 2010)

e Massive gravity (de Rham, Gabadadze. 2008)
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Scalar fields at Colliders

e All fermions and bosons entitled to radiate into scalar
fields

e May introduce large corrections to currently observable
interactions

* Focus on Electroweak sector

e Alsoa correction to QCD
processes, but calculations
more difficult (work in progress)

28
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Electroweak precision observables

* Six parameters to describe oblique corrections

e S measures the difference between wavefunction
renormalisation of Z and photon

e T measures additional isospin breaking at zero momentum
(difference between charged and neutral current interactions)

e U measures difference between W and Z wavefunction
renormalisations

e V measures the difference between Z wavefunction
renormalisation on shell and at zero momentum

e W measures the difference between W wavefunction
renormalisation on shell and at zero momentum

e X measures additional mixing between Z and photon (not
present for conformally coupled scalars)

(Peskin, Takeuchi 1992. Maksymyk, Burgess, London 1994)
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Higgs Production




Higgs Production

* Can the scalar give large corrections to Higgs production
Cross sections?
S D —E/d’iﬂ: By o (8a + 1A, - T — iBy)H|?
9 ﬂ/IH a a a

— Oy (%) p*H'H + O([HTH]?)

e Focus on production mechanisms with gauge bosons
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Higgs Production

» Enhancement of Higgs production rate

lj(ZZ — h) 14 Qng(—ﬂJf%) B wa([:')
[(ZZ — h) M M,

=1+ a(2V + R).

+ 200 (—M7) + Iy (—Mj;)

* New oblique parameter

d
all = m ].__[HH (kg)lkﬂz__ﬂf% +

[77(0)
MZ
* Higgs vacuum polarisation

Mgy (k?) ~ d(E*)A* + e(k?*) In ( AZ ) + f(K%)
M?Z
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Higgs Production

* Oblique parameter

2 A2 B2
_ B\° By

R — g
T B

1 B B, B
[a (1 + B—H) - ZBJE:?EB] + finite terms of order O (8% Mzy ).

* Leads to corrections to Higgs production

e Gluon-gluon fusion corrections possibly enhanced (work in
progress)
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The Vainshtein Effect

* A perturbation around the spherically symmetric

background 7(Z) = mo(F) + $(@)

e Within the Vainshtein radius renormalisations from the
background alter coefficient of the kinetic term

. eg Cqp — D, Cr — '[:} ZPW ~ Z(E#y
. ¥ v Ca 2 R 3/2
Lo= 2606 — 200067 +6T  , o [1 ST
2 2\ r

* Canonically normalising
e The coupling strength is suppressed

oy
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Casimir Experiments

» Casimir force arises between two
uncharged plates in a vacuum due to the
quantisation of the electromagnetic field

fluctuations

* Constrains form of chameleon S
potential, but not coupling R, R s

' V(9) = AJ(1+A™8"); n =4
P A =24 %107 eV
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* Current experimental
set-ups not suitable to look for
Galileons

Excluded Region
95% confidence

=
=
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N

10° 107 10* 10
Energy scale of potential: A (V)
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(Brax, van de Bruck, Davis, Mota Shaw. 2007) 2



The Vainshtein Effect
M.

° Writing ' = g(r)

Ameqr?

* The equation of motion can be written as
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e Suppression of the force when g<i1
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Atomic precision measurements

* Lamb shift is the splitting between the 2s and 2p energy

levels due to QED effects 20(n=11=1
| 740, 28(n=1,1=0) :E: E
Prem = pgrap™

e The electronic Lamb Shift Ly-a
18{n=1,|=0)
bounds —\—
107* GeV < (M, M,,)"/? (A
Bohr Dirac

* Current bounds mean that a new scalar field cannot
explain the anomalous Lamb shift of muonic hydrogen

27,
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Scalar Fields Couple to Gauge Bosons

e Start with a coupling only to fermions
L D B2\(¢*D,)\ + h.c.

¢ Conformal rescaling of the metric

G = B7*(0) G0
* Canonically normalised spinors are related by

g = B2\
* This makes the measure of the path integral scalar field

dependent

e The Jacobian is not invariant under rescaling

5(a,b) dX d)\ .

X d]s = |- od)
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Scalar Fields Couple to Gauge Bosons

* Computing the Jacobian

d(a,b) 3a . . )

‘3(.‘:?&) x exp tr 5 d*z /=g 00 (Vimthn + Untm),
3('11?5) i8S . _ 4f 4 / d4k 2
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* Leading to a term in the Lagrangian

5(;5 ab
£E D) EF Fab

* Quantisation and conformal rescaling do not commute!
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