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The Stuckelberg Trick in Massive GR: Bigravity I

Step 1: Recasting the mass term

gµν = ηµν − hµν + hµαhν
α + · · · ⇒ gµνηµν

represents a mass term
To recover diff (gauge) invariance replace ηµν by a dynamical
(Stuckelberg) extra metric field q̃µν

ηµν → qµν

Dynamical metric field in fictitious spacetime M̃ pulled back in our
spacetimeM

qµν = ∂ζA

∂xµ
∂ζB

∂xν g̃AB ζ : M→ M̃

New tensor from the two metric X
µ
ν = gµαqαν

Typical mass terms are made out τn = Tr(X n)

a (τ1 − 4)2 + b (τ2 − 2τ1 + 4) =
�
a hµνhµν + b h2

�
+ · · ·
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The Stuckelberg Trick in Massive GR: Bigravity II

Step 2: Stuckelberg Dynamics

The extra metrics is turned into a dynamical field

SMGR =

�
d

4
x

�
√

g M
2
pl

R(g) + κ M̃
2
pl

�
g̃ R(g̃)− 4(g̃g)1/4

V (X )
�

Matter couples only to gµν

Huge gauge symmetry: Diff1 × Diff2

with ζ → f
−1
2 · ζ · f1, g and g̃ tensors

Unitary gauge point wise identification of M̃ with M
ζ =Id⇒ qµν ≡ g̃µν

Diff1 × Diff2 broken down to Diffdiagonal
When κ→∞, g̃µν gets nondynamical and flat: g̃µν = ea

µ eb
ν η̃ab

ea = dφa and g̃µν = ∂µφa∂νφb η̃ab

In the bigravity unitary gauge and κ→∞ the stuckelberg fields
are φa
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The Stuckelberg Trick in Massive GR: Bigravity III

In the bigravity unitary gauge and κ→∞, the stuckelberg fields
are φa

Powerful formalism to treat in unified way both the Lorentz
preserving and Lorentz breaking cases

X|bkg = Diag(1, 1, 1, 1) Lorentz preserving (LI) background

X|bkg = Diag(a, b, b, b) Lorentz breaking (LB) background
only rotational symmetry is present
For any V the LI background is always present
Modified Einstein equations (Bigravity Unitary gauge)

M
2
pl

E
µ
ν + [Det(X )]1/4 �

V δµ
ν − 4(V �X )µ

ν

�
= T

µ
ν

κ M
2
pl

Ẽ
µ
ν + [Det(X )]−1/4 �

V δµ
ν + 4(V �X )µ

ν

�
= 0
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Exact Solutions, why ?

In massive gravity perturbation theory can be tricky
Check in a nonperturbative way the presence/absence of vDVZ
discontinuity
The spherically symmetric case in GR is the perfect benchmark
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The Schwarzschild solution in a nutshell

Adapted coordinates (t , r , θ, ϕ), the geometry is static (timelike
Killing vector hypersurface orthogonal)

ds
2 = −J(r) dt

2 + K (r) dr
2 + r

2
�

dθ2 + sin2 θ dϕ2
�

Eistein equations give

J = K
−1 = 1−

2MG

r
M

2
pl

= 16π G

M integration constant to be determined the Kepler 3rd law or by
ADM energy: total energy of the system.
Leading PN effects measured by J = 1 + 2φ and K = 1− 2ψ
GR gives ψ = φ = GM/r
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Modifying Schwarzschild I
Berezhiani-Comelli-Nesti-LP JHEP 0807 130 (2008)

Spherically symmetric ansatz

ds
2 = −J(r) dt

2 + K (r) dr
2 + r

2
dΩ2

d̃s
2

= −C(r) dt
2 + A(r) dr

2 + 2D(r) dtdr + B(r) dΩ2

Einstein equations

M
2
pl

E
µ
ν + [Det(X )]1/4 �

V δµ
ν − 4(V �X )µ

ν

�
= 0

κ M
2
pl

Ẽ
µ
ν + [Det(X )]−1/4 �

V δµ
ν + 4(V �X )µ

ν

�
= 0

Finding all solutions if very hard. Consider solutions with D �= 0
Potential independent analysis: gµν is diagonal⇒ E

µ
ν diagonal

⇒ (V �X )µ
ν diagonal⇒ Ẽ

µ
ν diagonal⇒ Ẽ1

1 = Ẽ2
2 ⇒ K = J−1

First result potential independent: ψ = φ, leading PN physics
same as in GR. Solar system tests are OK !
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Modifying Schwarzschild II

Class of exact solvable potentials

If {λi , i = 0, · · · , 3} are the eigenvalues of X , the potentials

Vn =
�

i1>i2···>in

λ−1
i1

λ−1
i2
· · ·λ−1

in
=

e4−n(X )

e4(X )

lead to analytically solvable equations

Examples

V1 =
1

6|g̃|
(� � g̃ g̃ g̃ g) = τ−1 = (6Det(X ))−1(τ3

1 − 3 τ2τ1 + 2 τ3)

V2 =
1

2|g̃|
(� � g̃ g̃ g g) = (τ2

−1 − τ−2) = Det(X )−1(τ2
1 − τ2)

V3 =
1
|g̃|

(� � g̃ g g g) = (τ3
−1 − 3 τ−2τ−1 + 2 τ−3) = 6−1Det(X )−1 τ1
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Solution I

J =

�
1−

2Gm1
r

�
+ 2G S r

γ , KJ = 1

C = c
2ω2

�
1−

2Gm2
κ r

�
−

2G

c ω2κ
S r

γ , D
2 + AC = c

2ω4

B = ω2
r

2 , A = · · ·

Integration constants: m1, m2 and S. Determined by the
parameters in V : c, ω
When γ < 2, for r →∞

g → diag(−1, 1, 1, 1) and g → ω2 diag(−c2, 1, 1, 1)

Lorentz Breaking asymptotics for c �= 1
When S �= 0 nontrivial modification but still flat at infinity when
γ < 2. When −1 < γ < 2 the large r behaviour is modified !
In general the solution can by AdS or dS at infinity (γ < 2)
not shown · · ·
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Solution II
How m1, m2 and S can be detemined for a body ?
Match the interior and exterior solution for the body
Result: From the matching condition we have

m1 = M(1 + α1 m
2
gR

2) , m2 = −α1 m
2
gR

2
M/c κ 2

S = m
2
gMR

1−γα2

Body of radius R and “bare” mass M = 4πρR3/3
mg graviton mass scale, α1 and α2 numerical factors

For low density object the deviation depends on size and not on
the mass. Long hairs ......
Sun: m2

gR2 ∼ 10−10 with mg � (10−20 eV) ∼ (100AU)−1

Deviations are important when m
−1
g ∼ R

For large objects R � 105R⊙ (red giants, large gas clouds,
galaxies. . . ) the effect may be of important
α can be negative and negative the interaction energy could
cause large fluids to anti-gravitate
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Potential falling slower than 1/r ?

Suppose we have a solution of Einstein equations with a static
potential φ, gtt = −1− 2φ
that, at large distances, falls off slower than 1/r

The total energy of the system would infinite. According Newton,
source’s total mass is ∼ flux of ∇φ

E =
1

4πG

�

S2

d
2
x �∇φ · �n

Finite E only if φ ∼ 1/r

No such a solution in perturbative GR: Green function goes as 1/r

Modified gravity is needed
Why do we need a non-Newtonian potential ?
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Total Energy

To be physical the solution must have finite total energy
Energy in GR is tricky

Equivalence principle forbids localization of gravitational energy
Hypothetical EMT of gravity: TGR(x0) ∼ F(∂ g)|x0 . But at each x0
g(x0) ≡ η and ∂ g(x0) = 0⇒ TGR(x0) = 0
Energy cannot be taken apart but must be considered as whole
Locally there is no gravity !
Energy in GR is the conserved charge associated with an arbitrary
translation in time, diff generated by a timelike vector
Equivalently, given a solution, its ADM energy is the value of the
Hamiltonian
Needed: a splitting of spacetime in space + time
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Energy I

In adapted coordinates (t , xi), ADM energy measured by an
observer with a clock ticking t

Htot =

�

t=const
d

3
x

�
HN +Hi N

i

�
+

�

S2, r→∞
d

2
xB

on shell
=

�

S2, r→∞
d

2
xB

S2 is 2-sphere bounding space (t = const) at infinity
The value of B and then the total energy depends on the detailed
asymptotics of gµν

For asymptotically flat spacetime, hij ∼ δij/r at large r, and using
asymptotics Cartesian coordinates xi

Htot, on shell =

�

S2, r→∞
d

2
x
√

σ

�
∂hij

∂xj
− δmn ∂hmn

∂xi

�
n

i
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Energy II

ADM limitations: derivatives of hij (extrinsic curvature) must fall-off
at least as 1/r2 to be well defined
Coordinates must be Cartesian at Infinity No good for our solution
! Large distances: D ∼ 1/

√
r (for γ < −1). Too slow

Analogous to the Schwarzschild solution written in Painlevé
coordinates: dt = dT − f �dr

ds
2 = −J dt

2 + J
−1

dr
2 + r

2
dΩ2

= −J dT
2 + 2f

�
J dTdr + dr

2 + 2f
�
J dTdr + r

2
dΩ2

f
�2 = J

−2
− 1

ADM energy is zero in Painleve coordinates !! In reality is not
defined in Painleve coordinates. Extrinsic curvature does not have
the right fall-off
We need a more general tool: Gravitational energy as a Noether
charge
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Energy as a Noether Charge

Consider the Noether charge associated to timelike translations:
xµ → xµ + ξµ, with ξ2 < 0
Choose a set boundary condition for dynamical variables, adjust
boundary terms in the action so that the charge is a scalar
(coordinate independent). NB a reference metric is needed. We
use flat space
Fixing the induced metric on the the 2-surface t = const , r = r̄

with r̄ large, we get the Nester expression for the energy

E =
1

32πG

�

St

d
2
z �ρσµν

�
ξτΠβλ∆Γα

βγ δµνγ
αλτ + ∇̄βξα∆Πβλ δµν

αλ

� ∂xρ

dz1
∂xσ

dz2 ,

For Schwarzschild , E = M, even in Painleve coordinates. Actually
does not depend on coordinates ! Ideal tool fo us
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Computation of the energy

Boundary terms come only from the kinetic parts
the potential has no role here
Contribution of R(g) E = M − S r̄γ+1

Contribution of R(g̃) Ẽ = M̃ c2 + S r̄γ+1 .

Total energy, finite even when r̄ →∞ !

Etot = E + Ẽ = M + M̃ c
2

Beware ! Consider a the frozen g̃ theory, equivalent to κ→∞.
The solution for g is similar, but there is no Ẽ contribution. Energy
is infinite !
No decoupling effects of “heavy modes” of g̃, needed to account
for all energy budget
Effective field theories are tricky in gravity when energy is
concerned, heavy modes warp spacetime and sometime cannot
be neglected
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Conclusions and Outlook

A non-standard Newton potential calls for modified gravity.
Bigravity is a great tool for studying massive deformation of GR
No dDVZ discontinuity in a large class of bigravity solutions
Spherically symmetric solution featuring:

1 First nontrivial large distance modification of gravity
2 Finite total energy

Outlook
What happens when the ghost free potential is used ?
Cosmological impact of massive deformation
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