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The Stuckelberg Trick in Massive GR: Bigravity |

Step 1: Recasting the mass term |

@ g = — ¥ L hHCRY ... = g,
represents a mass term

@ To recover diff (Qauge) invariance replace 7, by a dynamical
(Stuckelberg) extra metric field g,,,

Nuv — Quu
@ Dynamical metric field in fictitious spacetime M pulled back in our
spacetime M
A B . ~
qMV:g)gu g)c(v 9gaB C:M—=M

New tensor from the two metric X}’ = g**q..,
@ Typical mass terms are made out 7, = Tr(X")

a(ry —4)° +b(m—211 +4) = (ahuh™ +bh?) + -




The Stuckelberg Trick in Massive GR: Bigravity |l

Step 2: Stuckelberg Dynamics J

@ The extra metrics is turned into a dynamical field

Suan = [ d*x [VaME R(g) + < I3 /G R(E) - 4(@g)"/* V(X))

Matter couples only to g,
@ Huge gauge symmetry: Diff; x Diffs

with ¢ — ;- ¢ - f;, g and g tensors

@ Unitary gauge point wise identification of M with M
(=ld= qu =9
Diffy x Diffy broken down to Diffgiagonal

® When k — oo, g, gets nondynamical and flat: g, = €2 €lfja
e? = d¢? and @W — u¢aau¢b Nab

@ In the bigravity unitary gauge and x — oo the stuckelberg fields
are ¢




The Stuckelberg Trick in Massive GR: Bigravity |l

@ In the bigravity unitary gauge and v — oo, the stuckelberg fields
are ¢4

@ Powerful formalism to treat in unified way both the Lorentz
preserving and Lorentz breaking cases

Xpkg = Diag(1, 1, 1, 1) Lorentz preserving (LI) background

X kg = Diag(a, b, b, b) Lorentz breaking (LB) background
only rotational symmetry is present

@ For any V the LI background is always present
@ Modified Einstein equations (Bigravity Unitary gauge)

M2 El + [Det(X)]'/* [V ot — 4(V'X)L] = T
k M2 El + [Det(X)]V/* [Vt +4(V'X)L] =0




Exact Solutions, why ?

@ |In massive gravity perturbation theory can be tricky

@ Check in a nonperturbative way the presence/absence of vDVZ
discontinuity

@ The spherically symmetric case in GR is the perfect benchmark




The Schwarzschild solution in a nutshell

@ Adapted coordinates (i, r, 6, ), the geometry is static (timelike
Killing vector hypersurface orthogonal)

ds? = —J(r) d? + K(r) dr? + r2 (d92 1+ sin20 d¢2)

@ Eistein equations give

r
M integration constant to be determined the Kepler 3™ law or by

ADM energy: total energy of the system.

@ Leading PN effects measuredby J=1+4+2¢pand K =1 — 2¢
GR givesy = ¢ = GM/r




Modifying Schwarzschild |
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@ Spherically symmetric ansatz
ds® = —J(r) dt® + K(r) dr® + r* dQ?

ds’ = —C(r) d? + A(r) dr? + 2D(r) dtdr + B(r) dQ?

@ Einstein equations
M? El + [Det(X)]'/* [V o — 4(V'X)L] =0
k M2 El + [Det(X)]V/* [Vt +4(V'X)L] =0

Finding all solutions if very hard. Consider solutions with D # 0
Potential independent analysis: g, is diagonal = E/ diagonal

= (V'X)! diagonal = E} diagonal = E! = E2 = K = J~'
@ First result potential independent: b = ¢, leading PN physics
same as in GR. Solar system tests are OK !




Modifying Schwarzschild I

Class of exact solvable potentials J

If {\;, i=0,---,3} are the eigenvalues of X, the potentials

1y —1 1 €s_p(X)
Z )‘i1 >‘i2 A= eq(X)

I[{>lo-->1In
lead to analytically solvable equations

Examples ]

1 .
Vv, = Nl(eegggg) 7_1 = (6Det(X))™ 1(713—37271 + 2 73)

Vo =

2‘g’ (T 1 T—Z) — Det(X) (7_1 T 7_2)

3 ‘g‘ (€€gggg) ( 37——27-—1 ‘|—27-—3) 6_1 Det(X)_1




Solution |

J = (1—26rm1)+263ﬂ, KJ = 1

C = c%u? 1_26m2 __2G Sry D? + AC = c?w?
KT C w2k ’

B = w2r27 A=...

@ Integration constants: my, mo, and S. Determined by the
parametersin V: ¢, w

® When~ < 2, forr — o
g — diag(—1,1,1,1) and g — w?diag(—c?,1,1,1)

Lorentz Breaking asymptotics for ¢ # 1

@ When S # 0 nontrivial modification but still flat at infinity when
v < 2. When —1 < ~v < 2 the large r behaviour is modified !

@ In general the solution can by AdS or dS at infinity (v < 2)
not shown - - -




Solution |l

How my, mo and S can be detemined for a body ?
Match the interior and exterior solution for the body
Result: From the matching condition we have

my = M(1 + Oq mSRZ), mo = —qyq ng2M/CI{2

S =mMR' 7o,

Body of radius R and “bare” mass M = 4r7pR3/3
mg graviton mass scale, a4 and ap numerical factors

@ For low density object the deviation depends on size and not on
the mass. Long hairs ......

® Sun: m;R? ~ 1010 with myg < (1072 eV) ~ (100AU) ™"

e Deviations are important when m;' ~ R

@ For large objects R > 10°R,, (red giants, large gas clouds,
galaxies...) the effect may be of important

@ « can be negative and negative the interaction energy could
cause large fluids to anti-gravitate




Potential falling slower than 1/r ?

Suppose we have a solution of Einstein equations with a static
potential ¢, gt =—-1-2¢
that, at large distances, falls off slower than 1/r

@ The total energy of the system would infinite. According Newton,
source’s total mass is ~ flux of V¢

1

_ 2y T4 . A
=1 G Szdxv¢ n

E
Finite Eonlyif¢ ~1/r
@ No such a solution in perturbative GR: Green function goes as 1/r
@ Modified gravity is needed
@ Why do we need a non-Newtonian potential ?




Total Energy

To be physical the solution must have finite total energy
Energy in GR is tricky J

@ Equivalence principle forbids localization of gravitational energy
Hypothetical EMT of gravity: Tgr(xo) ~ F (9 g)x,- But at each xp
9(Xo) =nand 9 g(xo) = 0 = Tgr(Xo) =0

@ Energy cannot be taken apart but must be considered as whole
Locally there is no gravity !

@ Energy in GR is the conserved charge associated with an arbitrary
translation in time, diff generated by a timelike vector

@ Equivalently, given a solution, its ADM energy is the value of the
Hamiltonian
Needed: a splitting of spacetime in space + time




Energy |

@ In adapted coordinates (¢, x'), ADM energy measured by an
observer with a clock ticking t

Hiot = / d3x {H N + H, N’} +/ d’xB
t=const S

2, —0oo
on shell
= / d°xB
S2, r—oo0

S? is 2-sphere bounding space (t = const) at infinity

@ The value of B and then the total energy depends on the detailed
asymptotics of g,,,

@ For asymptotically flat spacetime, hj ~ oji/r at large r, and using
asymptotics Cartesian coordinates x’

Oh;; oh :
_ 2 y  emn®limn i
Htot, on shell — /82,r—>oo d X\/E <3Xj ) 8Xi ) n




Energy Il

@ ADM limitations: derivatives of h; (extrinsic curvature) must fall-off
at least as 1/r? to be well defined

@ Coordinates must be Cartesian at Infinity No good for our solution
| Large distances: D ~ 1/+/r (for v < —1). Too slow

@ Analogous to the Schwarzschild solution written in Painlevé
coordinates: dt = dT — f'dr

ds® = —Jdt® +J 1 ar? + r? dQ?
— —JdT? +2f'JdTdr + dr® + 2f'J dTdr + r® dQ?
f2=d2 1

ADM energy is zero in Painleve coordinates !! In reality is not
defined in Painleve coordinates. Extrinsic curvature does not have
the right fall-off

@ We need a more general tool: Gravitational energy as a Noether
charge




Energy as a Noether Charge

@ Consider the Noether charge associated to timelike translations:
XFP — xH 4 &7 with €2 < 0

@ Choose a set boundary condition for dynamical variables, adjust
boundary terms in the action so that the charge is a scalar

(coordinate independent). NB a reference metric is needed. We
use flat space

@ Fixing the induced metric on the the 2-surface t = const, r = r
with r large, we get the Nester expression for the energy

1

E =
327TG S;

2

OxP 0x°
azl dz?2’

@ For Schwarzschild , E = M, even in Painleve coordinates. Actually
does not depend on coordinates ! Ideal tool fo us ‘

T8 Q v v e A SHV
GUETNF AR FINI Y




Computation of the energy

@ Boundary terms come only from the kinetic parts
the potential has no role here

@ Contribution of R(g) E=M-Sr]
@ Contribution of R(g) E=Mc+Sptt,
@ Total energy, finite even when r — oo !

Eiot = E+E =M+ Mc?

@ Beware ! Consider a the frozen g theory, equivalent to k — oc.
The solution for g is similar, but there is no E contribution. Energy
IS infinite !

@ No decoupling effects of “heavy modes” of g, needed to account
for all energy budget

@ Effective field theories are tricky in gravity when energy is
concerned, heavy modes warp spacetime and sometime cannot
be neglected




Conclusions and Outlook

@ A non-standard Newton potential calls for modified gravity.
@ Bigravity is a great tool for studying massive deformation of GR

@ No dDVZ discontinuity in a large class of bigravity solutions

@ Spherically symmetric solution featuring:

@ First nontrivial large distance modification of gravity
@ Finite total energy

@ Qutlook

e What happens when the ghost free potential is used ?
e Cosmological impact of massive deformation
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