
2264-1

Workshop on Infrared Modifications of Gravity 

F. Berkhahn

26 - 30 September 2011

LMU Munich 
Germany

 
 

 

A Paradise Island for Deformed Gravity



Felix Berkhahn
ASC @ LMU Munich

A Paradise Island for 
Deformed Gravity

in collaboration with

Dennis D. Dietrich (CP3)
Stefan Hofmann (LMU)
Florian Kühnel (LMU)

Parvin Moyassari (LMU)

F.B., D.D. Dietrich, S. Hofmann: JCAP 1011 (2010) 
018

F.B., D.D. Dietrich, S. Hofmann: Phys. Rev. Lett. 
106 (2011) 191102

F.B., D.D. Dietrich, S. Hofmann:
JCAP 09 (2011) 024

F.B., D.D. Dietrich, S. Hofmann, F. Kühnel,      
P. Moyassari:

arXiv:1106.3566 [hep-th]

Freitag, 23. September 2011



∂μ∂μφa +
δVeff

δφa
= 0

Motivation 
Freitag, 23. September 2011



Point Of View
The vacuum energy density can only be inferred by employing 
gravity.  

The technical naturalness challenge is communicated 
exclusively via gravity.  
The resolution of this challenge might originate from the 
gravitational sector.  
If so, relevant deformations are required to consistently break 
gravity’s democratic foundation, i.e. the principle of 
equivalence.   

New dofs in the IR?

Massive Gravity is an example of such a theory.
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General „Massive“ Deformations

We are attacking cosmological questions.

Consider linear theory in a cosmological background.

S =
1

2

∫
M

d4x
√
|g0|

(
hμν

[Eαβμν(g0,∇) +M(g0)
αβμν

]
hαβ + Tμνhμν

)

standard FRW metric.gμν0

Question: Is there a unique choice for M
like for a Minkowski background?
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Deformation term.
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Higuchi Bound

The most simple ansatz would be the naive FP

m2 > H2 = const.

Mμναβ = m2
(
gμν0 gαβ0 − gμβ0 gνα0

)

On a deSitter background, Higuchi has shown that

to guarantee the absence of negative norm states.

On FRW: H → H(t) Implications?
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Stability Analysis: Technique

Using Bianchi: ∇μMμναβhαβ = 0

This constraint influences the kinetic structure 
of the theory.

Reveal by introducing Stückelberg fields:

hμν → hμν +∇(μAν) +∇μ∇νφ

Gives the gauge symmetries:

hμν → hμν +∇(μζν) Aμ → Aμ − ζμ,

Aμ → Aμ +∇μξ φ → φ− ξ,

Constraint becomes the equation of motion of      .Aμ
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Results of Naive FP in FRW I

At high energies the action can be diagonalized:

L ⊃ A(t)φ̇2 +B(t)(�∇φ/a)2

2. Sign of           implies classical (in)stability. B(t)

m2 > H2 +
1

3
ḢStability bound:

1. Sign of           determines the norm in Fock-space:A(t)

[
a(k), a†(k’)

]
= sign(A)δ(3)(k− k’)

Unitarity bound: m2 > H2 + Ḣ
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Results of Naive FP in FRW II

Additionally, we performed a complete cosmological 
perturbation analysis.

Valid at all energies.
Incorporates all degrees of freedom.

Orange: Classically 
unstable for zero 
momentum.

Green: Classically 
unstable for high 
momenta.

Blue: Unitarity violating.
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Self-Protection

The stability bound is stronger than the unitarity bound for 
non-phantom matter           .Ḣ < 0

System self-protects from direct unitarity violation.

Violation of stability bound

How to avoid the classical instability?

Large fluctuations.

Formation of a new background.

m → m(t)Try ! Or even more general ....
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The “Deformation Matrix“

Covariance and symmetry constrain the IR leading terms of 
the deformation matrix as:

On FRW: γ = 0 (vanishing Weyl tensor)

+β
(
R

μ[ν
0 g

β]α
0 +R

α[β
0 g

ν]μ
0

)

+ γRμανβ
0

S =
1

2

∫
M

d4x
√
|g0|

(
hμν

[Eαβμν(g0,∇) +M(g0)
αβμν

]
hαβ + Tμνhμν

)

Mμναβ = (m2 + αR0)
(
gμν0 gαβ0 − gμβ0 gνα0

)
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Stability Analysis: Technique

(Ψi) = (φ,A1, A2, A3, h11, h12, ...)

Singular points of the resulting kinetic matrix

Kμν
ij (∇μΨi)(∇νΨj) ,

signal the following instabilities:

1. Spatial directions: Classical instability

2. Time direction: Unitarity violation

System evolves into a new background.

Quantum theory loses probabilistic interpretation.

Equation of motion becomes singular.

h0μ = 0 A0 = 0

Use the gauge:
,
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Stability Analysis: General Case

Bounds in the general case α �= 0 β �= 0, are much more

complicated.
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Green: Classically stable and 
unitary.

Yellow: Self-Protection.

Red: Unitarity violation.

Black: No stability or unitarity 
today.

m = 0
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Stability Analysis: Time Dependence

m = 0
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Stability Analysis: Conclusion

ONLY the “running mass“ deformation

Mμναβ =
(
m2

0 + αR0

) (
g μν
0 g αβ

0 − g μβ
0 g να

0

)

will yield a stable theory. 

α must be sufficiently negative.

The form and parameters of the theory are 
constrained UNIQUELY like in Minkowski!

Absolute stability requires proper covariantization of 
the deformation matrix!
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