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Outline

- EM Precursors

- Hydrogeochemical Precursors

- Radon

..to be continued
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SEISMOELECTROMAGNETIC RESEARCH

LITHOSPHERE

» DC Electric Field variations
o ULFVLF emissions

» ULF polarization

IONOSPHERE

* VLF reflecting signal variations
* VLF Terminator times changes
* VLF activity increase

* Plasma variations

MAGNETOSPHERE
* Radiation belts electron precipitation

..to be continued
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Why monitoring of EM fields may provide insight into earthquake phenomena?

.. Dilatancy Model: relates changes in apparent resistivity to changes in porosity as per Archie's
Law [Nur, 1972], or Magnetic anomalies due to increased permeability [Merzer and Klemperer,
1997]

i. Irreversible Thermodynamic Models: Gradients of pressure, temperature or chemical

potential result in a 'coupled gradient of electrical potential' as per Onsager's relations
[Nourbehecht, 1963, Pride, 1994]

il. Gravity wave initiated disturbances propagating in the ionosphere [Molchanov 1998]

iv. Fractoemissions: Rapid increase in surface charge density of a face occurring when crystal
lattices are broken. Breakdown voltages can occur before charge redistribution lowers potentials.
[Karamanos, 2005].

v. lonospheric thickening leading to VLF radio anomalies, possibly due to increased ionizing
potential from radon gas emissions [Pulinets 2004, Molchanoy, 1998]

vi. Piezoelectricity and Piezomagnetism are changes in electric ad magnetic fields due to
stress changes in rocks [Johnston 1997]
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VLF noises trapping,

cyclotron interaction
Particle precipitation

Jet-streams

Field-aligned irregularities
Air pressure drop in magnetosphere

OLR anomalies

A

Air temperature growth Electric field effects
Earthquake clouds formation within the ionosphere

o . Atmospheric electric
Latent heat release Convective ions uplift, charge .
. e field growth
separation, drift in anomalous EF

Humidity drop

lons hydration—formation

, . Air conductivity change
of aerosol size particles

Air ionization by a-particles —
product of radon decay

Faults activation — permeability changes
Gas discharges including radon
emanation
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Filtering noise from transient thermal infrared anomaly, Taiwan Aug 16, 2006
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Atmospheric Transport Modeling Based
Estimation of Radioactive Release from the
Fukushima Dai-ichi Nuclear Power Plant
Accident

Wolfango Plastino, Michael Schoppner,
Francesco Bella, Mario De Vincenzi
University of Roma Tre, Dept. of Physics,
and INFN, Section of Roma Tre
Rome, Italy

Gerhard Wotawa
Central Institute for Meteorology and Geodynamics
Vienna, Austria

Abstract - As a consequence of the accident at the Fukushima
Dai-ichi nuclear power plant on March 2011, it is important to
characterize radioactivity release into the environment. Several
isotopes, amongst others caesium-137 and iodine-131, are
monitored at multiple stations throughout the world by the
International Monitoring System of the Comprehensive
Nuclear Test Ban Treaty Organization. In this paper it is
demonstrated how a worst case estimation of the radioactive
release would contribute to the IMS signal. The sensitivity
between source and receptor was determined using the
Atmospheric Transport Modeling (ATM), running on the
GRID computing facility of the Italian National Institute of
Nuclear Physics (INFN) - Roma Tre. The simulations were
compared with actual measurements.

Keywords-atmospheric transport modeling; caesium; iodine;
nuclear power plant.

I. INTRODUCTION

The 2011 Tohoku earthquake and tsunami caused severe
damage to Japanese infrastructure. Especially the
Fukushima Dai-ichi nuclear power plant (NPP) has been
presented in the media as a threat not only to its local
environment, but also as an impact to the global ecosystem.
Therefore, more information on the radioactive emissions
has to be gathered, but it is a difficult task to determine the
actual release of radioactive material. The isotopes caesium-
137 and iodine-131 play a significant role here, since both
are solely anthropogenic and usually only produced during
nuclear weapon tests and nuclear accidents.

The Comprehensive Nuclear Test Ban Treaty
Organization (CTBTO) has built up an International
Monitoring System (IMS), including 80 stations to measure
the atmospheric radioactivity. From these daily sampling
activities the radioactive concentration (Bg/m®) of caesium-
137 and iodine-131 at the monitoring stations can be
determined. Compared with other stations in the IMS
network the station JPP38 in the city of Gunma, Japan, has

978-1-4244-9952-6/11/$26.00 ©2011 IEEE

Pavel P. Povinec
Comenius University, Dept. of Nuclear Physics and
Biophysics
Bratislava, Slovakia

Antonio Budano, Federico Ruggieri
INFN, Section of Roma Tre
Rome, Italy

continuously measured the highest concentration of both
isotopes. As a second station for comparison USP79 on
Hawaii, USA, has been selected.

Then Atmospheric Transport Modeling (ATM) can be
used to estimate the radioactive source term at the
Fukushima Dai-ichi NPP (37.42 N, 141.03 E) that is
supposed to be mainly responsible for the signal received at
the stations JPP38 in Gunma (36.31 N, 139.00 E) and
USP79 (21.52 N, 157.99 W). The station JPP38 is in the
southwest of Fukushima and with a distance of about 250
km it is also the closest IMS station to the assumed source,
and therefore the majority of the atmospheric transport can
be assumed to be over land. The second station, USP79, on
the other hand, has a distance of 6,200 km to the assumed
source, while the transport is mainly over the sea.

11. BACKGROUND
A. Atmospheric Transport Modeling

The relation between a source, which emits particles into
the atmosphere, and the concentration at a receptor can be
explained with a source-receptor sensitivity matrix. The
concentration ¢ (Bg/m®) at any given receptor can be
expressed as the product of a spatio-temporal source field S
(Bq) and a corresponding source-receptor sensitivity field M
(m™) at discrete locations (i,j) and time intervals n:

¢ = MijSijn - @)

The field S is a multidimensional array of sources, which
is transformed by the multidimensional array of
multiplicators M into the concentration ¢ that is measured at
the receptor [1]. Here M presents the sensitivity between
source and receptor and has the dimension of m'“, whereas
the inverse element of M can be depicted as a dilution
volume. Atmospheric Transport Modeling has been proven
to be a valid tool for determining Source-Receptor
Sensitivity (SRS) matrices. However, while the underlying

2027 @IEEE
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Radium decay involves the release of the excess
energy which Is shared between the & particle
which forms (98.1%), and the new radon atom

The emanating power of rocks is defined as the
ratio between the amount of radon escaping

from the solid matrix and that produced by
radioactive decay

© United States Geological Survey
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SUMMARY

The process of diffusion of fluid in porous media and biological membranes has usually been
modelled with Darcy’s constitutive equation, which states that the flux is proportional to the
pressure gradient. However, when the permeability of the matrix changes during the process,
solution of the equations governing the diffusion presents severe analytical difficulties because
the variation of permeability is not known a priori.

A diverse formulation of the constitutive law of diffusion is therefore needed and many
authors have studied this problem using various methods and solutions. In this paper Darcy’s
constitutive equation is modified with the introduction of a memory formalism. We have also
modified the second constitutive equation of diffusion which relates the density variations in
the fluid to the pressure, introducing rheology in the fluid represented by memory formalisms
operating on pressure variations as well as on density variations. The memory formalisms are
then specified as derivatives of fractional order, solving the problem in the case of a porous
layer when constant pressures are applied to its sides.

For technical reasons many studies of diffusion are devoted to the flux rather than to the
pressure; in this work we shall devote our attention to studying the pressure and compute the
Green’s function of the pressure in the layer when a constant pressure is applied to the boundary
(Case A) for which we have found closed-form formulae. The described problem has already
been considered for a half space (Caputo 2000); however, the results for a half space are mostly
qualitative since in most practical problems the diffusion occurs in layers.

The solution is also readily extended to the case when a periodic pressure is applied to one
of the boundary planes while on the other the pressure is constant (Case B) which mimics the
effect of the tides on sea coasts. In this case we have found a skin effect for the flux which limits
the flux to a surface layer whose thickness decreases with increasing frequency. Regarding the
effect of pressure due to tidal waters on the coast, it has been observed that when the medium
is sand and the fluid is water, for a sinusoidal pressure of 2 x 10* Pa and a period of 24 hr
at one of the boundaries and zero pressure at the other boundary, the flux is sinusoidal with
the same period and amplitude decaying exponentially with distance to become negligible at
a distance of a few hundred metres.

A brief discussion is given concerning the mode of determination of the parameters of
memory formalisms governing the diffusion using the observed pressure at several frequencies.
We shall also see that, as in the classic case of pure Darcy’s law behaviour, the equation
governing the flux resulting in the diffusion through porous media with memory is the same
as that governing the pressure.

Key words: Darcy, diffusion, filtering, flux, memory, porous media.
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Ground-Water Radon Anomaly Before the Kobe
Earthquake in Japan

G. lgarashi, S. Saeki, N. Takahata, K. Sumikawa, S. Tasaka,
Y. Sasaki, M. Takahashi, Y. Sano

Radon concentration in ground water increased for several months before the 1995
southern Hyogo Prefecture (Kobe) earthquake on 17 January 1995. From late October
1994, the beginning of the observation, to the end of December 1994, radon concentration
increased about fourfold. On 8 January, 9 days before the earthquake, the radon con-
centration reached a peak of more than 10 times that at the beginning of the observation,
before starting to decrease. These radon changes are likely to be precursory phenomena

of the disastrous earthquake.

Mortivated by the report of precursory
changes in ground-water radon associated
with the 1966 Tashkent earthquake (1) and
some radon observations in China (2), a
group of scientists developed an automated
continuous monitoring system for ground-
water radon in Japan (3). For some 20 years,
an extensive network of ground-water ra-

Aan manitaring hae haan Anararad mainle

and roughly inversely proportional to, the
effective grain size of rocks in an aquifer (5).
Formation of microcracks will reduce the
effective grain size of rocks and thereby
enhance radon concentration in the ground
water.

To accumulate data on ground-water ra-
don concentration, we began studying the
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© Science, 1995 269, 60-61.
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Radon and rock deformation

Evelyn Roeloffs

hat happens when stress is applied
\/\/to rocks in the Earth’s crust so that

the crust deforms? This is a ques-
tion tackled by Trique et al. on page 137 of
this issue'. They have used a natural labora-
tory in the French Alps — the Roselend
reservoir — to monitor the geophysical sig-
nals that result from the greater or lesser
pressure on the underlying crust exerted by
the weight of water in the reservoir. This area
is not itself prone to earthquakes. But the
broader interest of this work is in what it may
tell us about the events, induced by crustal
deformation, that precede earthquakes.

The ability to predict earthquakes is of
course highly desirable. But progress in this
difficult and highly contentious science will
depend on detecting and interpreting phy-
sical changes stemming from the processes

§I|331‘| I 108

Radon

\ | | , AMain shock
Months
Figure 1 The radon and strain data for the
magnitude-7 Izu-Oshima earthquake™ of 14
January 1978 show changes preceding the
earthquake. But they do not match the model
shown in Fig. 2; in particular, neither change is
monotonic, and in both cases the pre-earthquake
change exceeds that produced by the earthquake
itself.

104

of earthquake generation. Many possible
precursors have been reported, but seis-
mologists are sceptical of those that are not
clearly linked to crustal deformation. This
‘unproven’ category includes the well-docu-
mented precursory decrease and increase
of radon concentration before the 1978
Izu—Oshima earthquake in Japan® (Fig. 1),
as well as the controversial assertion that

Deformation

Borehole
strainmeter

Seismic Time
rupture
begins

Fault plane
0 with impending
earthquake

Figure 2 Rock friction, which depends on slip
rate and sliding-induced changes on a fault
surface, implies that seismic slip should be
preceded by accelerating aseismic slip near the
hypocentre of an impending earthquake.
Sufficient aseismic slip would produce near-
surface deformation detectable by a borehole
strainmeter. Compared with the strain step
recorded at the time of the earthquake, the
precursory strain signal would be in the same
direction but of much smaller amplitude. A
magnitude-5 earthquake, 10 km deep, produces
maximum near-surface strain of about 10 "ata
site 5 km from its fault plane; strain increases
30-fold for each unit increase of magnitude, but
falls off as the third power of distance from the
source. Estimates of pre-seismic slip duration
and amplitude range widely because frictional
parameters of natural faults are poorly known.
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Seismologists expect earthquake precur-
sors to take the form of transient crustal-
strain signals from ‘aseismic’ fault slip near
the earthquake’s nucleation point (that is,
fault slip that is too slow to radiate seismic
waves) (Fig. 2). Numerical simulations
show, however, that such signals would be
exceedingly small’. Even the best existing
instruments — borehole strainmeters with
resolution exceeding a part per billion —
would need to be within a few kilometres of
the impending earthquake’s epicentre to
detect this aseismic strain. Although strain
changes preceding two California earth-
quakes have been identified*”, they don't
resemble the expected signals.

Proponents of earthquake prediction
maintain that changes in radon emission,
or in electrical or magnetic fields, represent
a natural amplification of pre-earthquake
deformation under special geological condi-
tions. For example, the conductance by rock
fractures of water or gas is proportional to
the third power of the fracture’s aperture’.
Fluid flow past ions adsorbed on rock sur-
faces produces an electric field, termed a
‘streaming potential) that varies with pres-
sure gradient and permeability’. Fluid, gas
or electromagnetic measurements might
thus detect deformation indirectly, albeit at
localized sites and with amplitudes related
nonlinearly to strain.

Silver and Wakita® list many potential
examples of such pre-earthquake ‘strain
indicators’ Unfortunately, these indicators
areirreproducible: they canbe detected only
in certain locations, but in any one location
earthquakes recur infrequently. What is
needed is evidence that transient strain leads
consistently, if not linearly or uniformly, to
observable phenomena. The radon, electri-
cal and ground-tilt measurements from
Roselend lake constitute this kind of repro-
ducible evidence.

The shallow crust’s reaction to large
changes in lake level may also illuminate the

NATURE | VOL 399 13 MAY 1999 www.nature.com





