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Motivation 
1. The rarity of extreme events: an obstacle and an incentive. 
2. Extreme events as a manifestation of complexity. 
3. Means, variances, and extrema: statistical analysis and 

modeling – deterministic and stochastic.  
4. Integrated analysis and modeling: Earth System Modeling 
    (ESM) and beyond – coupling socio-economic and 

     natural phenomena 
5. A new integrated modeling tool: Boolean delay equations 

(BDEs): simpler, more flexible. 
6. Pattern recognition and complex system modeling: 
    a pathway to prediction? 
 Pls. visit the E2C2 web site: http://e2c2.ipsl.jussieu.fr 



  What we started with. 
  What we did. 
  What we found out. 
  What we’d like to know. 



  Who we were and what we started with  





•      EC-funded project bringing together researchers in 
mathematics, physics, environmental and socio-
economic sciences. 

  €1.5M over 3.5 years (March 2005–August 2008). 
  Coordinating institute: Ecole Normale Supérieure. 
  17 ‘partners’ in 9 countries. 
  72 scientists + 17 postdocs/postgrads. 
  PEB: M. Ghil (ENS, Paris, P.I.), S. Hallegatte (CIRED), B. 

Malamud (KCL, London), A. Soloviev (MITPAN, Moscow), 
P. Yiou (LSCE, Gif s/Yvette, Co-P.I.) 
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Number of major natural catastrophes, by year and type 
of event (from Munich Re, Topics Geo 2003) 

16 

14 

12 

10 

8 

6 

4 

2 

0 
1950    1955     1960    1965     1970     1975     1980     1985     1990    1995     2000 

Earthquake, volcanic eruption 
Windstorm 

Flood 
Others 



   Extreme events a key manifestation of complex systems.  
   Describe, understand & predict extreme events. 
   Combine expertise in complex systems with broad 

knowledge in the natural and social sciences.  
   Main study areas included:  

   Natural disasters (earthquakes, wildfires, landslides, 
climatic extremes, etc.) 

   Socio-economic crises 
   Interaction between economic & climatic changes  

   Six scientific work-packages bridging the natural and 
social sciences. 

   Outcomes included: 
   Validated data sets 
   Novel insights 
   Forecast algorithms 



Frequency-size distributions for natural hazards  
  probabilistic hazard forecasting  

U.S. Wildfires U.S. & Italian Rockfalls 

Malamud, Turcotte, Guzzetti & 
Reichenbach  (2004, ESPL) 

Malamud, Morein & Turcotte  
(1998, Science) 



  What we started with. 
  What we did  



Special Issue: Extreme Events: Nonlinear Dynamics and Time Series Analysis 
Journal: Nonlinear Processes in Geophysics (NPG) 
Editors: Henning Rust, Pascal Yiou and Bruce D. Malamud 
(0)   Overall Review Paper : Extreme Events: Dynamics, Statistics and Prediction 
 M. Ghil, P. Yiou, + WG leaders and all other contributors in alphabetical order, in preparation. 
(1) Recurrence and interoccurrence behavior of self-organized complex phenomena.  
 S. G. Abaimov, D. L. Turcotte, R. Shcherbakov, and J. B. Rundle. NPG, 14, 455-464, 2007. 
 

(2) Spatial dependences among precipitation maxima over Belgium.  
 S. Vannitsem and P. Naveau. NPG, 14, 621-630, 2007. 
 

(3) Analysis of global geomagnetic variability.  
 V. Anh, Z.-G. Yu, and J. A. Wanliss. NPG, 14, 701-708, 2007. 
 

(4) Modeling pairwise dependencies in precipitation intensities.  
 M. Vrac, P. Naveau, and P. Drobinski. NPG, 14, 789-797, 2007. 
 

(5) Sequence of eruptive events in the Vesuvio area recorded in shallow-water Ionian Sea sediments.  
 C. Taricco, S. Alessio, and G. Vivaldo. NPG, 15, 25-32, 2008. 
 

(6) Detecting spatial patterns with the cumulant function – Part 1: The theory.  
 A. Bernacchia and P. Naveau. NPG, 15, 159-167, 2008. 
 

(7) Detecting spatial patterns with the cumulant function – Part 2: An application to El Niño.  
 A. Bernacchia, P. Naveau, M. Vrac, and P. Yiou. NPG, 15, 169-177, 2008. 
 

(8) Transformation of frequency-magnitude relation prior to large events in the model of block structure dynamics.  
 A. Soloviev. NPG, 15, 209-220, 2008. 
 

(9) Loading rates in California inferred from aftershocks.  
 C. Narteau, P. Shebalin, and M. Holschneider. NPG, 15, 245-263, 2008. 
 

(10) Weather regime dependence of extreme value statistics for summer temperature and precipitation.  
 P. Yiou, K. Goubanova, Z. X. Li, and M. Nogaj. NPG, 15, 365-378, 2008. 
 

(11) A delay differential model of ENSO variability: parametric instability and the distribution of extremes.  
 M. Ghil, I. Zaliapin, and S. Thompson. NPG, 15, 417-433, 2008. 
 

(12) Extreme event return times in long-term memory processes near 1/f.  
 R. Blender, K. Fraedrich, and F. Sienz. NPG, 15, 557-565, 2008. 
 

(13) Multivariate non-normally distributed random variables in climate research – introduction to the copula 
approach.  

 C. Schölzel and P. Friederichs. NPG, 15, 761-772, 2008. 





  What we started with. 
  What we did. 
  What we found out  



Forecasting algorithm for natural & social systems: 
can we beat statistics-based approaches? 

   Ghil & Robertson, 2002, PNAS; Keilis-Borok. 2002, Annu. Rev. EPS. 



Keilis-Borok, Gascon, Soloviev + 3 (2003,  
in T. Beer & A. Ismail-Zadeh, Eds., Kluwer)  

Forecasting algorithm example for social systems 

• Data from L.A.P.D. 



Simple models (ODEs, cellular automata, and BDEs) 
can help us understand and predict  

complex interactions in “real” systems 

SliderSlider--Block ModelBlock Model

Malamud & Turcotte (2000, IEEE Trans. CSE); 
Spyratos, Bourgeron & Ghil (2007, PNAS) Burridge & Knopoff (1967, BSSA) 



Work with B. Coluzzi (ENS, Paris), D. Dee (ECMWF, U.K.), F.-f. Jin (U. Hawaii),  
V. Keilis-Borok (IGPP, UCLA, & MITPAN, Moscow), A.P. Mullhaupt (Wall Street),  
J.D. Neelin (UCLA), P. Pestiaux (Total, France), A.W. Robertson (IRI, Columbia),  
A. Saunders (UCLA & L.A. School District), & I. Zaliapin (U. Nevada, Reno). 



after A. Mullhaupt (1984)  
 and M. Ghil et al. (2008) 



 Michael Ghil (ENS & UCLA)
with B. Coluzzi,  A. Groth & G. Weisbuch (ENS),

P. Dumas, S. Hallegatte & J.-Ch. Hourcade (CIRED),
L. Sella, P. Terna & G. Vivaldo (U. of Torino)

Pls. see these sites for further info. 
http://www.atmos.ucla.edu/tcd/ (TCD and IPCC) 
http://www.environnement.ens.fr/  

OECD Global Science Forum  
Wkshop on Complexity Science & Public Policy Erice, 5–7 Oct. 2008 



The need for models with  
endogenous dynamics 

Work with P. Dumas (CIRED, CNRS-EHESS-etc.), 
S. Hallegatte (CIRED and ENM, Météo-France), 

J.-C. Hourcade (CIRED, CNRS-EHESS-etc.) 
A. Groth (LMD, CNRS-ENS-etc.) 

“The currently prevailing paradigm, namely that financial markets tend towards 
equilibrium, is both false and misleading; our current troubles can be largely 
attributed to the fact that the international financial system has been developed 
on the basis of that paradigm.” 

George Soros, 
The New Paradigm for Financial Markets: 
The Credit Crisis of 2008 and What It Means, 
BBS, PublicAffairs, New York, 2008 



Extreme Events:  
Causes and Consequences (E2C2) 

WP4: Economic impacts of extremes 



A tale of two theories: the “real” cycle  
and the endogenous cycle theories 

•  In the real cycle theory, business cycles and economic fluctuations 
arise from exogenous “real” (i.e. not monetary) shocks, like changes in 
productivity or in energy prices, or from fiscal shocks. 

 Aside from these exogenous shocks, the economic system is stable: 
 all markets are at equilibrium, and there is no involuntary unemployment. 
 Deviations from equilibrium are damped more or less rapidly. 
 Acting on the economy, therefore (e.g., recovery policies), is not useful. 

•  In endogenous business cycle (EBC) models, cyclical behavior 
originates from endogenous instabilities in the economic system. 

 Several instabilities have been proposed:  
•  profitability-investment instability 
•  delays in investment 
•  income distribution 

 Acting on the economy can, therefore, have positive effects,  
          by stabilizing it or by shifting its mean state. 



NEDyM (Non-equilibrium Dynamic Model) 

•  Represents an economy with one producer, one consumer, one 
goods that is used both to consume and invest. 

•  Based on the Solow (1956) model, in which all equilibrium 
constraints are replaced by dynamic relationships that involve 
adjustment delays. 

•  The NEDyM equilibrium is neo-classical and identical to that in the 
original Solow model. If the parameters are changing slowly, 
NEDyM has the same trajectories as the Solow model. 

•  Because of market adjustment delays, NEDyM model dynamics 
exhibits Keynesian features, with transient trajectory segments, in 
response to shocks. 

•  NEDyM possesses endogenous business cycles! 

Hallegatte, Ghil, Dumas & Hourcade (J. Econ. Behavior & Org., 2008) 



Endogenous dynamics: an alternative 
explanation for business cycles 



Hopf bifurcation (“tipping point”) from stable 
equilibrium to a limit cycle (“business cycle”) 



αinv = 1.7: purely periodic       
  behavior (limit cycle) 

αinv = 2.5: transition to chaos 
 (irregular behavior) 



αinv = 10: irregular orbit 
 (kinky torus) 

αinv = 20: very asymmetric 
 business cycle  
 (relaxation oscillation) 



Endogenous business cycles (EnBCs)  
in NEDyM 

•  Business cycles originate from the profit–investment relationship 
  (oscillations with a 5–6-year period) – Fukuyama (1989–92)?! 

 higher profits => more investments => larger demand => higher profits 

•  Business cycles are limited in amplitude by three processes: 
–  increase in labor costs when employment is high; 

–  constraints in production and the consequent inflation in goods prices 
when demand increases too rapidly; 

–  financial constraints on investment. 

•  EnBC models need to be calibrated and validated 
–  harder than for real business cycle models (RBCs):  

 fast and slow processes =>  
  need a better definition of the business cycles => 
     study of BEA & NBER data! 



Catastrophes and the state of the economy – I 

Business cycle 

A vulnerability paradox: When does a disaster cause  
greater long-term damage to an economy,  

during its expansion phase or during a recession? 
      

Recession 
Expansion 

Hallegatte & Ghil, 2008, Ecol. Econ., 68, 582–592, doi:10.1016/j.ecolecon.2008.05.022 "



Catastrophes and the state of the economy – II 

Business cycle 

Economic losses due to a  
disaster, as a function of the     
        pre-existing economic 

 situation 

Limited losses if the 
disaster affects an 
economy in recession 

A vulnerability paradox:  
A disaster that affects an economy during its  

recession phase… 
      

Recession 
Expansion 



Larger losses if the disaster  
     affects an economy in   

 expansion 

Recession Expansion 

Business cycle 

Economic losses due to a 
disaster, as a function of the 
pre-existing economic situation 

… causes fewer long-term damages  
than if it occurs during an expansion! 

Catastrophes and the state of the economy – III 

Hallegatte & Ghil, 2008, Ecol. Econ., 68, 582–592, doi:10.1016/j.ecolecon.2008.05.022 "



Need a more objective, quantitative 
description of the “typical business 
cycle.” To do so we use two 
complementary approaches: 
1.  synchronization methods from 
   dynamical systems (“chaos”); and 
2. Advanced methods of time series  
   analysis (SSA and M-SSA) 

Bureau of Economic Analysis, 
www.bea.gov; 1947–2005.   
9 variables:  
gross domestic product (GDP), 
investment, consumption, 
employment rate (in %), price, 
total wage, imports, exports, and  
change in private inventories. 

Groth, Ghil, Hallegatte and Dumas, submitted  

Adaptive filtering, via multichannel !
singular-spectrum analysis (M-SSA);"

vertical shaded bars are NBER-defined recessions"

Raw data, detrended and standardized"

9-channel SSA (D = 9, M = 24 quarters)"



Stack spectrum of reconstructed 
components (RCs) 
2 distinct periodicities:  
a) the dominant business cycle (5 years) 
b) a 3-year cycle. 

Dumas, Ghil, Groth & Hallegatte, "
Math. Social Sci., to appear. "

Spread of points around the “mean cycle”: 
nonlinear fluctuation-dissipation theorem? 



Groth, Ghil, Hallegatte and Dumas, submitted  
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Conclusions and outlook:  
a hierarchy of economic models and  

data analysis methods 
1.  The highly idealized NEDyM model exhibits fairly realistic, endogenous business 

cycles (EBCs): period = 5–6 years, seasaw shape, good phasing of indices. 
2.  NEDyM displays a vulnerability paradox:  

 - extreme-event consequences depend on the state of the economy; 
 - they are more severe during an expansion than a recession. 

3.  This paradox is supported by 
 - consequences of Izmit (Marmara) earthquake, 1999;  
 - reconstruction process after the 2004 and 2005 hurricane seasons in Florida. 

4.  U.S. economic data (BEA, 1947–2005) tentatively support a nonlinear 
fluctuation-dissipation theorem (FDT) à la Ruelle. 

5.  EBC model calibration is an issue => sequential data-assimilation methods are 
being developed by P. Dumas and A. Groth. 

6.  Need a better, quantitative characterization of business cycles: U.S. + Euro- 
data, synchronization and spectral methods (A. Groth, L. Sella, G. Vivaldo) 

7.  Need more detailed, regional and sectorial models: B. Coluzzi, M. G., S.H., and G. 
Weisbuch are using simplified, Boolean models to study the economy as a 
network of businesses (suppliers and clients, etc.). 



The deeper motivationsThe deeper motivations
of of economiceconomic mod modelingeling



  What we started with. 
  What we did. 
  What we found out. 
  What we’d like to know  



•  Are extreme events similar in nature to all other events, only larger? "
"(cf. Scott Fitzgeraldʼs “The Great Gatsby”)"

•  Do standard statistical theories of extreme-value distribution do justice 
to all types of phenomena, or are there differences? "
"- “deterministic” vs. “stochastic” processes"

•  Can long-tailed distributions of events and periodic features "
"co-exist in a time series?"

•  Can we gain confidence in predicting extreme events from "
"deterministic and stochastic models of the underlying mechanisms?"

•  Topics for Panel Discussion?"



The mathematical theory of large deviations is connected to 
stochastic processes, martingales, parabolic PDEs, and 
maximum principles. Could it help us with our applications? 

Burridge & Knopoff (1967, BSSA) 



Singular Spectrum Analysis (SSA)

Spatial EOFs SSA

x – space s – lag 

k

λ

Statistical dimension

Pairs  oscillations
(nonlinear) sine + cosine pair

Colebrook (1978); Weare & Nasstrom (1982);
Broomhead & King (1986: BK); Fraedrich (1986)

Vautard & Ghil (1989: VG) 
Physica, 35D, 395-424 

BK+VG: Analogy between Mañe-Takens embedding
              and the Wiener-Khinchin theorem 

Cφ(x,y)=Eφ(x,ω)φ(y,ω)

=
1
T

Z T

o
φ(x, t)φ(y, t)dt

CX(s)=EX(t + s,ω)φ(s,ω)

=
1
T

Z T

o
X(t)X(t + s)dt

11/28



Singular Spectrum Analysis (SSA)

SSA decomposes (geophysical & other) 
time series into 

Temporal EOFs (T-EOFs) and 
Temporal Principal Components (T-PCs), 
based on the series’ lag-covariance matrix

Selected parts of the series can be 
reconstructed, via 

Reconstructed Components (RCs)

Time series

RCs

T-EOFs

Selected References:
 Vautard & Ghil (1989, Physica D); 
 Ghil et al. (2002, Rev. Geophys.)

• SSA is good at isolating oscillatory behavior via paired eigenelements.
• SSA tends to lump signals that are longer-term than the window into 

– one or two trend components.

•
12/28
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