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ABSTRACT 
 

A model of block-and-fault system dynamics (or simpler "block model") considers a seismic 
region as a system of perfectly rigid blocks divided by infinitely thin plane faults. The blocks 
interact between themselves and with the underlying medium. The system of blocks moves as 
a consequence of prescribed motion of the boundary blocks and of the underlying medium. 
As the blocks are perfectly rigid, all deformation takes place in the fault zones and at the 
block base in contact with the underlying medium. Relative block displacements take place 
along the fault planes. This assumption is justified by the fact that for the lithosphere the 
effective elastic moduli of the fault zones are significantly smaller than those within the 
blocks. Block motion is defined so that the system is in a quasi-static equilibrium state. The 
interaction of blocks along the fault planes is viscous-elastic ("normal state") while the ratio 
of the stress to the pressure remains below a certain strength level. When the critical level is 
exceeded in some part of a fault plane, a stress-drop ("failure") occurs (in accordance with the 
dry friction model), possibly causing failure in other parts of the fault planes. These failures 
produce earthquakes. Immediately after the earthquake and for some time after, the affected 
parts of the fault planes are in a state of creep. This state differs from the normal state because 
of a faster growth of inelastic displacements, lasting until the stress falls below some other 
level. Numerical simulation of this process yields synthetic earthquake catalogues. 
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1. Introduction 

 
A model of block-and-fault system dynamics (or simpler “block model”) of the lithosphere 
was developed to analyse features of seismicity in a particular region. A structure, which 
consists of perfectly rigid blocks divided by infinitely thin plane faults, is considered in the 
model. Displacements of all blocks are supposed to be infinitely small relative to their size. 
The blocks interact with each other and with the underlying medium. The system of blocks 
moves owing to prescribed motions of the boundary blocks and the underlying medium. The 
detailed description of the model is given below. 

The model exploits the hierarchical block structure of the lithosphere proposed by 
Alekseevskaya et al. (1977). The basic principles of the model were developed by Gabrielov 
et al. (1986, 1990) on the basis of the proposition that blocks of the lithosphere are separated 
by comparatively thin, weak and less consolidated fault zones, such as lineaments and 
tectonic faults, and major deformation and most earthquakes occur in such fault zones. The 
model takes advantage of the simple fact that the integral rigidity of the fault zones is smaller 
that the blocks (at least in the time scale smaller than say 100 years or less). Accordingly, 
blocks are presumed perfectly rigid; hence deformation takes place only in fault zones and at 
block bottoms in contact with the underlying medium. Relative block displacements take 
place along fault zones. 

Later on the model was improved to create possibility of approximating in it a block 
structure of a real seismoactive region under consideration (Soloviev 1995), and now it is 
region-specific and allows to set up specific driving tectonic forces, the realistic geometry of 
blocks and a fault network, and the rheology of fault zones. The model generates stick-slip 
movement of blocks, comprising seismicity and slow movements. 

The model reproduces the whole ensemble: tectonic driving forces => geodetic 
movements => creep => earthquakes. 

The block model as other numerical models of the processes generating seismicity 
(e.g., Shaw et al. 1992; Gabrielov and Newman 1994; Allègre et al. 1995; Newman et al. 
1995; Turcotte 1997; Narteau et al. 2000) provides a straightforward tool for a broad range of 
problems: (i) connection of seismicity and geodynamics; (ii) dependence of seismicity on 
general properties of fault networks; that is, fragmentation of structure, rotation of blocks, 
direction of driving forces etc; (iii) study of the earthquake preparation process and 
earthquake prediction (e.g., Gabrielov and Newman 1994), moreover such models can be 
used to suggest new premonitory patterns that might exist in real catalogues (e.g., Gabrielov 
et al. 2000; Shebalin et al. 2000). 

The block model reproduces some basic features of the observed seismicity: 
Gutenberg-Richter law, clustering of earthquakes, dependence of the occurrence of large 
earthquakes on fragmentation of the block structure and on rotation of blocks etc. It enables to 
study relations between geometry of faults, block movements and earthquake flow, and to 
reproduce regional features of seismicity. From simplest observation – territorial distribution 
of seismicity – the model enables to reconstruct tectonic driving forces (and to evaluate 
competing geodynamic hypotheses). 

In the absence of seismicity the block model enables to study dependence between 
motions of boundary blocks specified at lateral boundaries of the structure, motions of the 
underlying medium specified at the block bottoms and motions of the blocks constituting the 
structure. One may consider the direct problem: to determine motions of the blocks 
constituting the structure (and their relative motions along the faults) when motions of the 
underlying medium and the boundaries are specified. The inverse problem may be considered 
as well: to determine motions of the underlying medium and the boundaries, which supply the 
best approximation of the specified motions of the blocks of the structure or their relative 
motions along the faults. 
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The detailed description of the block model and examples of its application are given 
by Soloviev and Ismail-Zadeh (2003). The model was used to analyze clustering of 
earthquakes (Maksimov and Soloviev, 1999), the dependence of the occurrence of large 
earthquakes on structure fragmentation and on rotation of blocks (Keilis-Borok et al., 1997), 
long-range interaction between synthetic earthquakes (Vorobieva and Soloviev, 2005), 
transformation of frequency-magnitude relation prior to large earthquakes (Soloviev, 2008), 
seismicity of an arc subduction zone (Rundquist and Soloviev, 1999), the lithospheric motion 
and seismic flow in the Vrancea earthquake-prone region of the south-eastern Carpathians 
(Panza et al., 1997; Soloviev et al., 1999; Ismail-Zadeh et al., 1999), in the Western Alps 
(Soloviev and Ismail-Zadeh, 2003), in the Sunda Arc (Soloviev and Ismail-Zadeh, 2003), in 
the Tibet-Himalayan region (Ismail-Zadeh et al., 2007), and in Italy and its surroundings 
(Peresan et al., 2007). 

 
2. Block Structure Geometry 

 
A block structure is illustrated in Fig. 1. A layer of thickness H is confined between two 
horizontal planes; a block structure covers a limited and simply connected part of this layer. 
Each lateral boundary of a block is part of a plane that intersects the layer. These planes 
divide the structure into blocks. The parts of these planes located inside the block structure 
and its lateral faces are called fault planes. 

 
 

 
 

FIGURE 1 A sketch of the block-and-fault dynamics model. 
 
 

The geometry of the block structure is described by the lines where fault planes 
intersect the upper plane limiting the layer (these lines are called faults) and by the dip angle 
of each fault plane. Three or more faults cannot have a common point on the upper plane, and 
a common point of two faults is called a vertex. The direction is specified for each fault and 
the dip angle of the fault plane is measured on the left of the fault. The positions of a vertex 
on the upper and the lower plane, limiting the layer, are connected by a segment (rib) of the 
line of intersection of the corresponding fault planes. The part of a fault plane between two 
ribs corresponding to successive vertices on the fault is called a fault segment. Any fault 
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segment is a trapezoid. The common parts of the block with the upper and lower planes are 
polygons; the common part of a block with the lower plane is called a block bottom.  

It is assumed that the block structure is bordered by a confining medium, whose 
motion is prescribed on its continuous parts comprised between two ribs of the block structure 
boundary. These parts of the confining medium are called boundary blocks. 

 
3. Block Movement 

 
The blocks are assumed to be rigid and all their relative displacements take place along the 
bounding fault planes. The interaction of the blocks with the underlying medium takes place 
along the lower plane, any kind of slip being possible. 

The movements of the boundaries of the block structure (the boundary blocks) and the 
medium underlying the blocks are assumed to be an external force on the structure. The rates 
of these movements are considered to be horizontal and known.  

Dimensionless time is used in the model; therefore, all quantities that contain time in 
their dimensions are measured per unit of dimensionless time, so that time does not enter their 
dimensions. For example, in the model, velocities are measured in units of length and a 
velocity of 5 cm means 5 cm for one unit of dimensionless time. When necessary, one assigns 
a realistic value to one unit of dimensionless time. For example, if one unit of dimensionless 
time is one year, then the velocity of 5 cm, specified for the model, means 5 cm/year.  

At each time the displacements of the blocks are defined so that the structure is in a 
quasi-static equilibrium, and all displacements are supposed to be infinitely small, compared 
with the typical block size. Therefore the geometry of a block structure does not change 
during the simulation and the structure does not move as a whole. 

 
4. Interaction between Blocks and the Underlying Medium 

 
The elastic force, which is due to the relative displacement of the block and the underlying 
medium, at some point of the block bottom, is assumed to be proportional to the difference 
between the total relative displacement vector and the vector of slippage (inelastic 
displacement) at the point.  

The elastic force per unit area fu = (fx
u,fy

u) applied to the point with coordinates (X,Y), 
at some time t, is defined by  

 
fx

u = Ku(x - xu - (Y - Yc )( - u) - xa), 
(1) 

fy
u = Ku(y - yu + (X - Xc )( - u) - ya) 

 
where Xc and Yc are the coordinates of the geometrical centre of the block bottom; (xu, yu) and 
u are the translation vector and the angle of rotation (following the general convention, the 
positive direction of rotation is anticlockwise), about the geometrical centre of the block 
bottom, for the underlying medium at time t; (x,y) and  are the translation vector of the block 
and the angle of its rotation about the geometrical centre of its bottom at time t; (xa, ya) is the 
inelastic displacement vector at the point (X,Y) at time t. 

The evolution of the inelastic displacement at the point (X,Y) is described by the 
equations 

 
dx

dt

a
 = Wu fx

u,   
dy

dt

a
 = Wu fy

u.                                                                                        (2) 

   
The coefficients Ku and Wu in (1) and (2) may be different for different blocks. 
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5. Interaction between Blocks along Fault Planes 

 
At the time t, in some point (X,Y) of the fault plane separating the blocks numbered i and j 
(the block numbered i is on the left and that numbered j is on the right of the fault) the 
components x, y of the relative displacement of the blocks are defined by 

 
x = xi - xj - (Y - Yc

i)i + (Y - Yc
j)j, 

(3) 
y = yi - yj + (X - Xc

i)i - (X - Xc
j)j 

 
where Xc

i, Yc
i, Xc

j, Yc
j are the coordinates of the geometrical centres of the block bottoms, (xi, 

yi), and (xj, yj) are the translation vectors of the blocks, and i, j are the angles of rotation of 
the blocks about the geometrical centres of their bottoms, at time t.  

Relative block displacements, it was assumed, take place only along fault planes; 
therefore, the displacements along the fault and horizontal planes are related by 
 

t = exx + eyy, 
(4) 

l = ncos, where n = exy - eyx. 
 
Here t and l are the displacements along the fault plane parallel (t) and normal (l) 

to the fault line on the upper plane; (ex, ey) is the unit vector along the fault line on the upper 
plane (Fig. 2);  is the dip angle of the fault plane; and n is the horizontal displacement, 
normal to the fault line on the upper plane. It follows from (4) that n is the projection of l 
on the horizontal plane (Fig. 3a). 

 

 
FIGURE 2 Displacements and forces along a fault plane 
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FIGURE 3 Vertical section of a block structure orthogonal to a fault. Relative displacements 
of blocks n and l (a) and forces p0, fl, and fn (b). 

 
 

The elastic force per unit area f = (ft, fl) acting along the fault plane at the point (X, Y) 
is defined by  

 
ft = K(t - t), 

(5) 
fl = K(l - l).  

Here t, l are inelastic displacements along the fault plane at the point (X,Y) at time t, parallel 
(t) and normal (l) to the fault line on the upper plane. 

The evolution of the inelastic displacement at the point (X,Y) is described by the 
equations  
   

d

dt

t
 = Wft,   

d

dt

l
 = Wfl.                                                                                                 (6) 

   
The coefficients K and W in (5) and (6) may be different for different faults. The 

coefficient K can be considered as the shear modulus of the fault plane. 
Equations (5-6) correspond to visco-elastic (Maxwell) rheological law that describes 

the relation of f to the strain  
 

dt

d

dt

d 








  f

1
         (7) 

where  is the relaxation time (  / ),  is the shear modulus, and  is the viscosity. 

Coefficients in (5-7) are connected by formulas: K = /a, W = a/, a is the actual width of the 
fault zone; and )/(1 KW . 

In addition to the elastic force, there is the reaction force which is normal to the fault 
plane; the work done by this force is zero, because all relative movements are tangent to the 
fault plane. The elastic energy per unit area at the point (X,Y) is equal to  
 

e = (ft(t - t) + fl(l - l))/2.                                                                                         (8) 
 
From (4) and (8) the horizontal component of the elastic force per unit area, normal to 

the fault line on the upper plane, fn can be written as:  
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fn = 



e

n
 = 

fl

cos
 .                                                                                                       (9) 

     
It follows from (9) that the total force acting at the point of the fault plane is horizontal 

if there is a reaction force, which is normal to the fault plane (Fig. 3b). The reaction force per 
unit area is equal to 

 
p0 = fltg.                                                                                                                    (10) 
      
The reaction force (10) is introduced and therefore there are not vertical components 

of forces acting on the blocks and there are not vertical displacements of blocks. 
Formulas (3) are also valid for boundary faults. In this case, one of the blocks 

separated by the fault is a boundary block. The movement of boundary blocks is prescribed 
by their translation and rotation about the coordinate origin. Therefore the coordinates of the 
geometrical centre of the block bottom in (3) are set to zero for any boundary block. For 
example, if the block numbered j is a boundary block, then Xc

j = Yc
j = 0 in (3). 

 
6. Equations of Equilibrium 

 
The components of the translation vectors of the blocks and the angles of their rotation about 
the geometrical centres of the bottoms are found from the condition that the total force and 
the total moment of forces acting on each block are equal to zero. This is the condition of 
quasi-static equilibrium of the system and at the same time the condition of minimum energy. 
The equilibrium equations include only forces caused by specified movements of the 
underlying medium and the boundaries of the block structure are considered only in the 
equilibrium equations. In fact, it is assumed that the action of all other forces (gravity, etc.) on 
the block structure is ruled out and does not cause displacements of blocks. 

In accordance with formulas (1), (3-5), (9), and (10) the dependence of the forces, 
acting on the blocks, on the translation vectors of the blocks and the angles of their rotations 
is linear. Therefore the system of equations which describes the equilibrium is linear one and 
has the following form 

Az = b                                                                                                                         (11) 
 

where the components of the unknown vector z = (z1, z2, ..., z3n) are the components of the 
translation vectors of the blocks and the angles of their rotation about the geometrical centres 
of the bottoms (n is the number of blocks), i.e. z3m-2 = xm, z3m-1 = ym, z3m = m (m is the 
number of the block, m = 1, 2, ..., n).  

Matrix A does not depend on time and its elements are defined from formulas (1), (3-
5), (9), and (10). The moment of the forces acting on a block is calculated relative to the 

geometrical centre of its bottom. Expressions for the elements of matrix A contain integrals 
over fault segments and block bottoms. Each integral is replaced by a finite sum, in 
accordance with the space discretization described in Section 7. 

The components of the vector b are also defined from formulas (1), (3-5), (9), and (10) 
as well. They depend on time, explicitly, because of the movements of the underlying 
medium and of the block structure boundaries and, implicitly, because of the inelastic 
displacements. 
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7. Discretization 
 

Time is discretized with a step t. The state of the block structure is considered at discrete 
values of time ti = t0 + it (i = 1, 2, ...), where t0 is the initial time. The transition from the 
state at ti to the state at ti+1 proceeds as follows:  

(i) new values of the inelastic displacements xa, ya, t, l are calculated from 
equations (2) and (6);  

(ii) translational vectors and rotational angles at ti+1 are obtained for boundary 
blocks and the underlying medium;  

(iii) the components of b in equations (11) are found, and these equations are used 
to define the translational vectors and the angles of rotation for the blocks. The 

elements of A in (11) are independent of time; hence matrix A and the 
associated inverse matrix are calculated only once, at the beginning of the 
modeling.  

Formulas (1-6, 8-10) describe forces, relative displacements, and inelastic 
displacements at points of fault segments and of block bottoms. Therefore, the discretization 
of these surfaces is required for the numerical simulation. The space discretization is defined 
by the parameter , and it is applied to the surfaces of the fault segments and to the block 
bottoms. The discretization of a fault segment is performed as follows. Each fault segment is 
a trapezoid with bases a and b and height h = H/sin, where H is the thickness of the layer, 
and  is the dip angle of the fault plane. The values  

n1 = ENTIRE(h/) + 1, and n2 = ENTIRE(max(a,b)/) + 1, 
are determined, and the trapezoid is divided into n1n2 small trapezoids by two groups of 
segments inside it; there are n1-1 segments parallel to the trapezoid bases and spaced at 
intervals h/n1, and n2-1 segments connecting the points spaced by intervals of a/n2 and b/n2, 
respectively, on the two bases. The small trapezoids obtained in such a way are called cells. 
The coordinates X, Y in (3) and the inelastic displacements t, l in (5) are supposed to be the 
same for all points of a cell and are considered average values over the cell. When introduced 
in formulas (3-5), (9), and (10) they yield the average (over the cell) of the elastic and 
reaction forces per unit area. The forces acting on a cell are obtained by multiplying the 
average forces per unit area by the area of the cell. 

The bottom of a block is a polygon. Prior discretization, it is divided into trapezoids 
(triangles) by segments passing through its vertices and parallel to the Y axis. The 
discretization of these trapezoids (triangles) is performed in the same way as for fault 
segments. Small trapezoids (triangles) so obtained are also called cells. Coordinates X, Y and 
inelastic displacements xa, ya in (1) are assumed to be the same for all points of a cell. 

 
8. Earthquake and Creep 

 
Let us introduce the quantity 

 

 = 
0pP 

 f
                                                                                                                 (12) 

where f = (ft,fl) is the vector of the elastic force per unit area given by (5), P is assumed the 
same for all fault planes and can be interpreted as the difference between the lithostatic and 
the hydrostatic pressure; p0 given by (10) is the reaction force per unit area. 

Three following values of  are assigned to each fault plane: 
B > Hf > Hs. 
Let us assume that the initial conditions of the model satisfy the inequality  < B for 

all the cells of fault segments. If, at some time ti, the value of  in any cell of a fault segment 
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reaches the level B, a failure ("earthquake") occurs. The failure is considered slippage during 
which the inelastic displacements t, l in this cell change abruptly to reduce the value of  to 
the level Hf. Thus, the earthquakes occur in accordance with the dry friction model. 

The new values of inelastic displacements in the cell are calculated from  
t

e = t + ft ,   l
e = l + fl                                                                                          (13) 

where t, l, ft, fl are the inelastic displacements and the components of the elastic force vector 
per unit area just before the failure. The coefficient  is given by  

 = 1/K - PHf/(K(|f| + Hffltg)).                                                                                  (14) 
It follows from (5), (10), and (12-14) that on obtaining the new values of the inelastic 

displacements the value of  in the cell becomes equal to Hf . 
After calculating new values of inelastic displacements for all failed cells, new 

components of the vector b are found, and the translational vectors and the angles of rotation 
for all blocks are obtained from the system of equations in (11). If  still exceeds B for some 
cell(s) of the fault segments, the procedure given above is repeated for this cell (or cells). 
Otherwise the state of the block structure at time ti+1 is determined as follows: translational 
vectors, rotational angles (at ti+1) for boundary blocks and for the underlying medium, and the 
components of b in equations (11) are calculated, and then equations in (11) are solved.  

The cells of the same fault plane, where failure occurs simultaneously, form a single 
earthquake. The parameters of the earthquake are defined as follows:  

(i) the origin time is ti;  
(ii) the epicentral coordinates and the source depth are the weighted sums of the 

coordinates and the depths of cells included in the earthquake (the weight of 
each cell is given by its area divided by the total sum of areas of all cells 
included in the earthquake);  

(iii) the magnitude is calculated from  
M = 0.98lgS + 3.93,                                                                                        (15) 
where S is the total area of cells (in km2) included in the earthquake and the 
values of coefficients are specified in accordance with Utsu and Seki (1954). 
Wells and Coppersmith (1994) updated the relationship between magnitude 
and rupture area and estimated the absolute term in (15) to be 4.07. Hence, if 
the updated relationship is employed in the model, earthquake magnitudes 
could be slightly higher. 

It is assumed that the cells, in which a failure has occurred, are in the creep state 
immediately after the earthquake. It means that the parameter Ws (Ws > W) is used instead of 
W for these cells in (6) to describe the evolution of inelastic displacements; Ws may be 
different for different fault planes. After each earthquake, a cell is in the creep state as long as 
 > Hs, whereas when  < Hs, the cell returns to the normal state, and henceforth the 
parameter W is used in (6) for this cell.  
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