Advanced School on Understanding and Prediction of

 Earthquakes and other Extreme Events in Complex Systems26 September - 8 October 2011

User's Guide for Programs CODM and PRAL

A.Soloviev
International Institute of Earthquake Prediction
Theory and Mathematical Geophysics
Russian Academy of Sciences
84/32 Profsouznaya st., Moscow 117997
Russian Federation
www.mitp.ru

THE PACKAGE FOR PATTERN RECOGNITION

I. COMMON NOTATIONS

The authors used these programs mainly for recognition of earthquake-prone areas (Gelfand et al., 1976; Gvishiani and Kossobokov, 1981) and for research in earthquake prediction (Sadovsky, 1986; Keilis-Borok and Rotwain, 1990). However there is a wide variety of other possible applications (for example, Keilis-Borok and Lichtman, 1981).

The authors should emphasize that all the methods of earthquake prediction studies suggested are yet insufficiently tested. The actual forward prediction can be made so far on experimental basis only and the users are advised to disclaim any liability for the consequences of the actions, based on their predictions. Accordingly the authors disclaim the liability for any consequences of the use of these programs. Let us remind also, that the concrete prediction of a strong earthquake has to be released only by a qualified scientific body to the proper authorities (see for example the code, established under the auspices of UNESCO and IUGG).

Following are:
(i) The content of the package
(ii) For each program:

- the purpose of the program;
- the description of the dialogue;
- the example of printout.

Content of the package

The package includes the following programs written in C for PC compatible computers:
CODM (and its variant CODMF, which uses output PROFILE of the program FUNC as input file)

- discretization of the functions;
- coding the objects as binary vectors.

PRAL

- application of the pattern recognition algorithm CORA-3 and its modification CLUSTERS;
- application of the pattern recognition algorithm HAMMING.

The algorithms are applied to vectors with binary components.
Initial data - objects of recognition specified as vectors with real or binary components.
The programs work in an interactive mode. The necessary input data are requested by using window interface.

We suggest that the user is acquainted with algorithms. The descriptions of CORA-3 may be found in Gelfand et al. (1976). HAMMING is described by Gvishiani and Kossobokov (1981) and Keilis-Borok and Lichtman (1981).

WARNING. The estimation of significance of pattern recognition results requires numerical tests. Examples of logical tests can be found in Gelfand et al. (1976), of statistical tests - in Gvishiani and Kossobokov (1981).

To users.

The package is modified and expanded from time to time according to the experience of its applications. Any suggestions or information on results obtained will be kindly appreciated. Please send both to
Dr.A.A.Soloviev,
International Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, 84/32 Profsouznaya st., Moscow 117997, Russian Fedration
Phone: +7 49533345 13, Fax: +7 4953334124
E-mail: soloviev@mitp.ru

II. PROGRAM CODM

2.1 Purpose

The program is used for:

- indication of the class (and subclass) for the objects;
- making histograms;
- binary coding.

There are three classes: the first and the second classes are used for learning, the third one only for voting. If necessary, subclasses in the first class can be formed.

Histograms of functions can be made separately for each class of objects. Thresholds for histograms can be entered in or calculated automatically; $p-1$ thresholds divide the range of the function into p intervals. For automatic calculation of thresholds you have to specify p. In this case the program calculates thresholds to place almost the same number of objects into each interval.

There is also a possibility to make a table ("table-histogram") showing the distribution of the objects according to the values of the function. The range of the function is divided by thresholds with a constant step. For each interval the table lists the names of the objects with the values of the function within this interval.

The table with two-dimensional distribution of objects according to the values of two functions can be constructed. By using the thresholds for discretization of the functions the objects can be coded as vectors with binary components.

There are two methods of coding: \boldsymbol{I}-method and \boldsymbol{S}-method. Let $x_{1}<x_{2}<\ldots<x_{\mathrm{p}-1}$ be the thresholds for discretization, x_{0} and x_{p} - the bounds of the function range. If the value of the function is x, and $x_{\mathrm{j}-1}<x \leq x_{\mathrm{j}},(1 \leq j \leq p)$, then the function value is coded as

$$
\begin{array}{lllllllllllll}
0 & 0 & \ldots & 0 & 1 & 0 & \ldots & 0 & 0 & -\operatorname{in} \boldsymbol{I} \text {-method, } \\
0 & 0 & \ldots & 0 & 1 & 1 & \ldots & 1 & & & -\operatorname{in} \boldsymbol{S} \text {-method. } \\
1 & 2 & \ldots & j-1 & j & j+1 & \ldots & p-1 & p &
\end{array}
$$

2.2 Files

The program CODM reads the values of the functions of the objects from input file in ASCII code. The extension of the name of this file should be .PAT. This file has to have the following format:

- the first line: the number of functions and the number of objects;
- the next line or several lines: the names of functions (5 symbols each);
- the next line or several lines: the names of objects (5 symbols each);
- the next lines: values of functions of objects (an object begins from a new line). The values, which are greater than 99999 are interpreted as undefined.
The following is an example of such file (The file contains information about values of 2 functions with names \mathbf{f} and \mathbf{g} for 15 objects with names M1, M2, M3, M4, M5, M6,M7, M8, M9, M10, M11, M12, M13, M14, M15):

```
2 15
    f
    M14 M15
0
17.5 3
502
35 3
0}
0}
152
253
0}
04
152
24 2
27.5 2
30 2
0 3
```

There is a variant of the program with name CODMF, which uses output PROFILE of the program FUNC with values of functions as input file. The extension of the name of this file should be .PAT.

The program may store the following data on a disk in PROFILE: the name of the input file; index of classes for objects; composition of subclasses of the first class; thresholds of discretization and the method of coding for each function. The extension of the name of this file should be .COD. This information may be used in further runs of the program.

The program may create a file on a disk with coding of objects, identification of classes and subclasses, names of objects and functions. The extension of the name of this file should be .RAT. This file is used by the program PRAL.

The program may create a ASCII format text file on a disk with histograms and coding for printout. The name of this file is COD.PRI. The number of columns in the file does not exceed 120 .

2.3 Dialog

To input data the program uses the interface organized as a set of menus with accessible windows.

First menu

The first menu is selection of the mode. To select the necessary mode you have to move the cursor to the proper window and press ENTER. There are three possible modes:

- discretization (only discretization is made);
- coding (only coding is made);
- discretization and coding (discretization and coding are made).

By pressing F10 it is possible to terminate the program.

Second menu

The second menu contains the window where the name of the input PROFILE has to be specified. The name has to have the extension .COD. Blank means that input PROFILE will not be used. The function key $\mathbf{F 9}$ may be used to search the file in the current directory.

By pressing F10 it is possible to terminate the program.

Third menu

The third menu contains the following windows.

$\#$	Window Name	Function and Comments
1	Input file	To specify the name of the file with values of functions of objects. The name has to have extension .PAT. The function key F9 may be used to search the file in the current directory.
2	Discr.	To specify the number of classes, which will be used in discretization. This window is used only if discretization is made.
3	Codir.	To specify the number of classes, the objects from which will be coded. This window is used only if coding is made.
4	Classes	To indicate or change class for each object. CURRENT - current definition of classes is used. 1 FOR ALL - all objects will belong to the 1st class. 2 FOR ALL - all objects will belong to the 2nd class, etc. The window can be opened by pressing F2 to screen the names of objects and to change their classes.
5	Type	To set whether coding will be typed. ON - coding will be typed. OFF - coding will not be typed. This window is used only if coding is made.
6	Print	To set whether printout will be created. ON - the file COD.PRI will be opened. If coding is made the printout of coding will be written in the file COD.PRI. OFF - the file COD.PRI will not be created.

7	Subclasses	To introduce subclasses in the first class. ON - subclasses in the first class are specified. In this case the window can be opened by pressing F2 to define or to change subclasses.
8	File with coding	OFF - subclasses are not specified. This window is used only if coding is made.
9	Output Profile	To specify the name of the output file with coding. The name has to have the extension .RAT. Blank means that a file with coding will not be created. This window is used only if coding is made.
10	Control	To specify the name of the output PROFILE. The name has to have extension.COD. Blank means that output PROFILE will not be created.
	To show consistency of input data already indicated. OK - data are consistent and if the cursor is moved to this window the fourth menu can be reached by pressing ENTER.	
??? - data are not consistent.		

By pressing ESC it is possible to return to the first menu.
By pressing F10 it is possible to terminate the program.

Fourth menu

The fourth menu shows the list of functions with thresholds for discretization and methods of coding. By moving the cursor it is possible to choose thresholds or methods of coding to be corrected. For each function by pressing $\mathbf{F} 2$ it is possible to pass to the fifth menu. When ESC is pressed the program passes to coding or to the end of work according to the mode selected.

By pressing F10 it is possible to terminate the program.

Fifth menu

The fifth menu contains four operations, which may be made for the function selected.

- Diagram of discretization - shows a histogram (numbers and percent of objects from each class for each interval of discretization).
- Automatic discretization - calculates automatically the thresholds for discretization. The number of intervals has to be specified.
- Table-histogram - shows the table-histogram for the function. The step of the table has to be specified.
- Two-dimensional table - shows two-dimensional distribution of objects according to the values of two functions: the function under consideration and any other function. The name of the other function, minima, maxima and steps for the functions have to be specified.
To execute the operation it is necessary to make specifications, to move the cursor to the proper window and, to press ENTER. In making of tables and diagrams the right limits of intervals are included in the proper intervals.

By pressing ESC it is possible to return to the fourth menu.

By pressing F10 it is possible to terminate the program.

2.4 Example of Printout

```
Input profile - ex25.cod
File with values of functions - ex25.pat
    number of objects = 15, number of functions = 2
Mode: discretization and coding
Number of classes for coding = 3; subclasses - off
Number of classes for discretization = 3
Output profile - ex25.cod
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{0.0024 .00} \\
\hline class: & & & & & & & & fin \\
\hline 1 (a) : & & 40\%) & & 40\%) & & 20\%) & 01 & 0\%) \\
\hline 2 (b) : & & 60\%) & 01 & 0\%) & & 40\%) & 01 & 0\%) \\
\hline 3 (c) : & 1 ( & 20\%) & & 40\%) & & 40\%) & 01 & 0\%) \\
\hline
\end{tabular}
100-
    90
    80-
        b
    50-
```



```
10
        0.00
                                    24.00
```

f: $\min =0.00 \max =50.00$ step $=5.00$
$g: \min =2.00 \max =4.00$ step $=0.20$

thresholds for 2 function g obtained by h-method 2.00

| class: | | | undefined |
| :---: | :--- | :--- | :--- | :---: |
| $1(\mathrm{a}):$ | $2(40 \%)$ | $3(60 \%)$ | $0(0 \%)$ |
| $2(\mathrm{~b}):$ | $4(80 \%)$ | $1(20 \%)$ | $0(0 \%)$ |
| $3(\mathrm{c}):$ | $4(80 \%)$ | $1(20 \%)$ | $0(0 \%)$ |

100 90 bc
a
a
bc
2.00
2 function g : step $=0.500$

length of vectors $=4$
discretization and coding of functions: method
function of coding values of thresholds

f	s	0.00	24.00
g	i	2.00	

vectors of class $1(\mathrm{DO})$

			2	4	
1.	M1	1	1	1	0
2.	M2	0	1	0	1
3.	M7	0	1	1	0
4.	M8	0	0	0	1
5.	M10	1	1	0	1

vectors of class $2(\mathrm{NO})$

1.	M3	0	0	1	0
2.	M5	1	1	1	0
3.	M9	1	1	1	0
4.	M14 4	0	0	1	0
5.	M15	1	1	0	1

```
vectors of class 3(X)
```

1.	M4	0	0	0	1
2.	M6	1	1	1	0
3.	M11	0	1	1	0
4.	M12	0	1	1	0
5.	M13	0	0	1	0

2.5 Comments to the Example of Printout

The printout contains the following:

- The histogram for the function \mathbf{f}. The thresholds were calculated automatically. Symbol "a" indicates points of the histogram for learning objects of the first class, symbol "b" for learning objects of the second class, symbol " c " - for objects of the third class. Number of intervals to divide the function's range equals to 3 .
- Two-dimensional table for the functions \mathbf{f} and \mathbf{g}.
- The histogram for the function \mathbf{g}. Number of intervals to divide the function range into equals to $\mathbf{2}$. The threshold $\mathbf{2 . 0}$ was entered in.
- The table-histogram for the function \mathbf{g}.
- The coding of the objects. The function \mathbf{f} was coded by s-method, the function \mathbf{g} - by \mathbf{i} method.

III. PROGRAM PRAL

3.1 Purpose

The program is used for application of the pattern recognition algorithm CORA-3 (Gelfand et al., 1976), its modification CLUSTERS (Gelfand et al., 1976), and the pattern recognition algorithm HAMMING (Gvishiani and Kossobokov, 1981; Keilis-Borok and Lichtman, 1981) to objects, which are binary vectors. The algorithm CORA-3 and its modification CLUSTERS are described in detail in (Gelfand et al., 1976). The description of the algorithm HAMMING is given below.

Algorithm Hamming

The learning in this algorithm consists of calculation of \boldsymbol{a} kernel. Two values $\alpha_{1}(i)$ and $\alpha_{2}(i)$ are calculated for each used component (i is the number of the component)
$\alpha_{1}(i)=\frac{n_{1}(i)+1}{N_{1}+2}, \quad \alpha_{2}(i)=\frac{n_{2}(i)+1}{N_{2}+2}$.

Here N_{1} is the number of objects of the first class in the learning, $n_{1}(i)$ is the number of those of them, which possess 1 in the i-th component; N_{2} and $n_{2}(i)$ are similar numbers for objects of the second class. The kernel is the vector $\mathbf{k}=\left(k_{1}, k_{2}, \ldots, k_{1}\right)$, where

$$
k_{i}=\left\{\begin{array}{l}
1, \text { if } \alpha_{1}(i) \geq \alpha_{2}(i), \\
0, \text { if } \alpha_{1}(i)<\alpha_{2}(i),
\end{array}\right.
$$

l is the number of used components.

Voting is calculation of the Hamming's distance r_{j} between each object and the kernel
$r_{\mathrm{j}}=w_{1}\left|x_{1}{ }^{\mathrm{j}}-k_{1}\right|+w_{2}\left|x_{2}{ }^{\mathrm{j}}-\mathrm{k}_{2}\right|+\ldots+w_{1}\left|x_{1}{ }^{\mathrm{j}}-\mathrm{k}_{1}\right|$.
Here j is the number of the object, x_{i}^{j} is the value of the i-th used component of the j-th vector, w_{i} is the given weight for the i-th used component. Weights are real numbers between 0 and 1 and multiples of 0.1.

An object is classified as the object of the first class if r_{j}, calculated for it, is not greater than a chosen threshold Δ. The objects, for which r_{j} is greater than Δ are classified as the objects of the second class.

3.2 Modes of Computation

During one run of the program several variants can be calculated. Variants can have the following differences:

- the algorithm selected;
- the composition of learning sets of the first and second classes;
- the components of vectors, which are used;
- the values of thresholds for characteristic traits of the first and the second classes (if

CORA-3 or CLUSTERS is applied);

- the values of weights (if HAMMING is applied);
- the control experiment executed;
- the kind of output.

The control experiments are:

- Test excluding (T-E) of objects;
- T-E of functions;
- Equivalent traits (if CORA-3 or CLUSTERS is applied).

T-E of objects is additional calculation of $n_{\text {T-E }}$ variants, where $n_{\text {T-E }}=\max \left(N_{1}, N_{2}\right), N_{1}$ and N_{2} are numbers of objects in the learning sets of the first and the second classes respectively. In the first of these variants the first object from the learning set of the first class and the first object from the learning set of the second class are excluded from the learning; in the second variant the pair of the first objects is returned and the pair of the second objects is excluded, and so on. After excluding and returning the last object of the lesser learning set the objects from the greater learning set only are excluded one by one. When the program deals with subclasses, instead of separate objects of the first class the subclasses are excluded one by one in T-E of objects.

T-E of functions is an additional calculation of m variants, where m is the number of functions used in the variant. In each of these variants the functions of the main variant are excluded one at a time.

Equivalent traits is an experiment, in which the ε-equivalent, ε-covering, or ε-subordinating traits for the characteristic traits obtained in the variant are selected. Let \boldsymbol{A} be a characteristic trait included in the final list of traits in the variant, \boldsymbol{B} - a characteristic trait of the same class selected in the experiment, M - the learning sample of the corresponding class.

Denote the numbers of objects from the set M, which have the trait \boldsymbol{A}, the trait \boldsymbol{B}, the both traits \boldsymbol{A} and \boldsymbol{B}, and at least one of the traits \boldsymbol{A} or \boldsymbol{B} by $\mu(\boldsymbol{A}), \mu(\boldsymbol{B}), \mu(\boldsymbol{A} \cap \boldsymbol{B})$, and $\mu(\boldsymbol{A} \cup \boldsymbol{B})$ respectively.
If $(\mu(\boldsymbol{A} \cup \boldsymbol{B})-\mu(\boldsymbol{A} \cap \boldsymbol{B})) / \mu(\boldsymbol{A} \cup \boldsymbol{B}) \leq \varepsilon$, than the trait \boldsymbol{B} is a $\boldsymbol{\varepsilon}$-equivalent trait for the trait \boldsymbol{A}.
If $(\mu(\boldsymbol{A})-\mu(\boldsymbol{A} \cap \boldsymbol{B})) / \mu(\boldsymbol{A}) \leq \varepsilon$, than the trait \boldsymbol{B} is a $\boldsymbol{\varepsilon}$-covering trait for the trait \boldsymbol{A}.
If $(\mu(\boldsymbol{B})-\mu(\boldsymbol{A} \cap \boldsymbol{B})) / \mu(\boldsymbol{B}) \leq \varepsilon$, than the trait \boldsymbol{B} is a $\boldsymbol{\varepsilon}$-subordinating trait for the trait \boldsymbol{A}.
Here ε is a real number, $0 \leq \varepsilon<1$.
Thus the group of ε-equivalent, ε-covering, or ε-subordinating traits is selected for the each characteristic trait obtained in the variant (the trait itself is included in the group). The voting of objects is performed in the experiment by using these groups of traits. For the object with the number j the votes for the first $\left(U_{\mathrm{j}}\right)$ and for the second $\left(V_{\mathrm{j}}\right)$ classes are calculated by the formulas
$U_{\mathrm{j}}=u_{1}^{\mathrm{j}} / p_{1}+u_{2}^{\mathrm{j}} / p_{2}+\ldots+u_{\mathrm{tI}}{ }^{\mathrm{j}} / p_{\mathrm{t} 1}$,
$V_{\mathrm{j}}=v_{1}{ }^{\mathrm{j}} / s_{1}+v_{2}^{\mathrm{j}} / s_{2}+\ldots+v_{\mathrm{t} 2}{ }^{\mathrm{j}} / \mathrm{st}_{12}$.
Here t 1 and t 2 are the numbers of characteristic traits obtained in the variant for the first and the second class respectively, $p_{\mathrm{i}}(i=1,2, \ldots, \mathrm{t} 1)$ and $s_{\mathrm{i}}(i=1,2, \ldots, \mathrm{t} 2)$ are the numbers of traits in the groups obtained in the experiment, $u_{i}^{j}(i=1,2, \ldots, t 1)$ and $v_{i}^{j}(i=1,2, \ldots$, t2 $)$ are the numbers of traits from the corresponding groups, which the object has. The votes U_{j} and V_{j} are used for classification as the numbers of characteristic traits of the first and of the second class, which the object has.

3.3 Files

The program uses the file with the coding of objects and other information, which is created by the program CODM. The extension of the name of this file should be .RAT. The program may write information on conditions of each variant in a file on a disk (PROFILE) and read information from this file. The extension of the name of this file should be .KAT (for CORA algorithm) or .HAT (for HAMMING algorithm).

The selected characteristic traits may be written in the file on a disk to use them for classification of new objects. The extension of the name of this file is .FAT.

The program may create on a disk a new file with the coding of objects and identification of classes for objects, which corresponds to the classification obtained. The extension of the name of this file is .RAT. This file may be used in the control experiment, in which the obtained classes are used as a new learning set. When the problem of earthquake prone areas is considered this experiment is called Earthquake future" (Gelfand et al., 1976).

The program may create on a disk a ASCII format text file for printing with the name PRA.PRI. The number of columns in this file does not exceed 120.

3.4 Dialog

To input data the program uses the interface organized as a set of menus with accessible windows.

First menu

The first menu is selection of the algorithm. To select the algorithm you have to move the cursor to the proper window and press ENTER. If the algorithm CORA-3 is selected and subclasses are defined in the file with the coding of objects then the algorithm CLUSTERS is applied.

By pressing F10 it is possible to terminate the program.

Second menu

The second menu contains the window where the name of the input PROFILE has to be indicated. If the algorithm CORA-3 or CLUSTERS is applied then the name has to have the extension .KAT. If the algorithm HAMMING is applied then the extension has to be .HAT. Blank means that an input PROFILE will not be used. The function key F9 can be used to search the file in the current directory.

By pressing $\mathbf{F} 10$ it is possible to terminate the program.

Third menu

The third menu contains the following windows.

$\#$	Window Name	Function and Comments
1	File with coding	To specify the name of the file with the coding of objects. This file is created by the program CODM. The name has to have extension .RAT. The function key F9 can be used to search the file in the current directory.
2	Type	To set whether the coding of objects will be typed. ON - the coding will be typed. OFF - the coding will not be typed.
3	Print	To set whether the printout will contain the coding of objects. ON - the coding of objects will be written in the file PRA.PRI. OFF - the coding of objects will not be written in the file PRA.PRI.
4	Control	To show consistency of input data already indicated. OK - data are consistent and if the cursor is moved to this window the fourth menu can be reached by pressing ENTER. The coding of objects will be typed if ON is in the window 2.
??? - data are not consistent.		

By pressing ESC it is possible to return to the first menu.
By pressing F10 it is possible to terminate the program.

Fourth menu

The fourth menu contains the following windows.
$\left.\left.\left.\begin{array}{|l|l|l|}\hline \# & \text { Window Name } & \text { Function and Comments } \\ \hline 1 & \text { Traits from } & \begin{array}{l}\text { To specify how the traits will be obtained. } \\ \text { Blank (learning) means that traits will be obtained as a result } \\ \text { of learning. }\end{array} \\ \hline \text { The name of the file (with the extension .FAT) means that } \\ \text { the traits will be read from this file. The function key } \\ \text { F9 can be used to search the file in the current } \\ \text { directory. }\end{array}\right\} \begin{array}{l}\text { This window is not used if the algorithm HAMMING is } \\ \text { applied. }\end{array}\right\} \begin{array}{l}\text { To specify the values of selection and contradiction } \\ \text { thresholds for traits of the first class (k1, k1t) and the second } \\ \text { class (k2, k2t). This window is not used if the algorithm } \\ \text { HAMMING is applied or traits are read from the file. }\end{array}\right\}$

6	Output Profile	To specify the name of the output PROFILE. If the algorithm CORA-3 or CLUSTERS is applied then the name has to have the extension .KAT. If the algorithm HAMMING is applied then the extension has to be .HAT. Blank means that output PROFILE will not be created.
7	Control	To show consistency of input data already indicated. OK - data are consistent and if the cursor is moved to this window the learning is executed by pressing ENTER. If the algorithm CORA-3 or CLUSTERS is applied the numbers of occurrences of the components in the traits will be typed on the screen. The fifth menu will be reached after the learning.
??? - data are not consistent.		

By pressing ESC it is possible to return to the third menu.
By pressing F10 it is possible to terminate the program.

Fifth menu

The fifth menu contains the following windows.

$\#$	Window Name	Function and Comments
1	Delta	To specify the value of the parameter $\boldsymbol{\Delta}$, which is used for classification of objects. If the algorithm CORA-3 or CLUSTERS is applied then Δ is an integer number used as a threshold for a difference between numbers of characteristic traits of the first and second class which an object has. If the algorithm HAMMING is applied then Δ is a real number used as a threshold for a Hamming's distance between an object and the kernel. By pressing F2 it is possible to show on the the screen the classification obtained with the specified value of Δ.
2	Definition of weights	To specify the values of weights for calculation of Hamming's distances between objects and the kernel. ALL EQUAL TO 1.0 - all weights are set to be equal to 1. CURRENT - weights will have their current values. The window can be opened by pressing F2 to change the values of weights.
$\left.\begin{array}{l}\text { AUTOMATIC - weights are calculated by the formula: } \\ w_{i}=0.1 \text { ENTIRE }\left(\frac{\left\|\alpha_{1}(i)-\alpha_{2}(i)\right\|}{\text { max }\left\|\alpha_{1}(i)-\alpha_{2}(i)\right\|}+0.5\right.\end{array}\right)$.		

3	Kernel and weights	To set whether the printout will contain the information about the kernel obtained in the variant and the weights used. $\mathbf{O N}$ - the information about the kernel and the weights will be written in the file PRA.PRI. OFF - the information about the kernel and the weights will not be written in the file PRA.PRI. By pressing F2 it is possible to show on the screen the kernel and the weights. This window is not used if the algorithm CORA-3 or CLUSTERS is applied.
4	Traits	To set whether the printout will contain the image of the traits obtained in the variant. $\mathbf{O N}$ - the image of the traits will be written in the file PRA.PRI. OFF - the image of the traits will not be written in the file PRA.PRI. By pressing $\mathbf{F} 2$ it is possible to show on the screen the image of the traits. This window is not used if the algorithm HAMMING is applied.
5	Lattices	To set whether the printout will contain the lattices of the traits obtained in the variant. $\mathbf{O N}$ - the lattices of the traits will be written in the file PRA.PRI. OFF - the lattices of the traits will not be written in the file PRA.PRI. By pressing F2 it is possible to show on the screen the lattices of the traits. This window is not used if the algorithm HAMMING is applied.
6	Table of voting	To set whether the printout will contain the 2-dimensional table of voting for the variant. ON - the table will be written in the file PRA.PRI. OFF - the table will not be written in the file PRA.PRI. By pressing $\mathbf{F 2}$ it is possible to show on the screen the 2dimensional table of voting. This window is not used if the algorithm HAMMING is applied.
7	Voting	To set whether the printout will contain the results of voting obtained in the variant. ON - the results of voting will be written in the file PRA.PRI. OFF - the results of voting will not be written in the file PRA.PRI. By pressing F2 it is possible to show on the screen the results of voting obtained in the last variants.
8	Protocol	To set whether the printout will contain the conditions of the variant. $\mathbf{O N}$ - the conditions of the variant will be written in the file PRA.PRI. OFF - the conditions of the variant will not be written in the file PRA.PRI. This window is not used if $\mathbf{O N}$ is at least in one of the windows 3-7 (in this case the conditions of the variant will be written in the file PRA.PRI).

$\left.\begin{array}{|l|l|l|}\hline 9 & \text { File for traits } & \begin{array}{l}\text { To specify the name of the file, in which the traits obtained } \\ \text { will be written. The name has to have the extension .FAT. } \\ \text { Blank means that this file will not be created. This window is } \\ \text { not used if the algorithm HAMMING is applied. }\end{array} \\ \hline 10 & \begin{array}{l}\text { File for coding of } \\ \text { classification }\end{array} & \begin{array}{l}\text { To specify the name of the file, in which the coding of } \\ \text { objects and identification of classes for objects, which } \\ \text { corresponds to the classification obtained, will be written. } \\ \text { The name has to have the extension .RAT. Blank means that } \\ \text { this file will not be created. }\end{array} \\ \hline 11 & \text { Control experiment } & \begin{array}{l}\text { To specify the control experiment, which will be executed in } \\ \text { the variant. } \\ \text { NO - no control experiments will be executed. } \\ \text { T-E OF OBJECTS - test excluding of objects will be } \\ \text { executed. }\end{array} \\ \text { T-E OF FUNCTIONS - test excluding of functions will be } \\ \text { executed. } \\ \text { EQUIVALENT TRAITS - the experiment "Equivalent } \\ \text { traits" will be executed. The window may be opened } \\ \text { by pressing F2 to get into the sixth menu to specify } \\ \text { the conditions of the experiment. This experiment is } \\ \text { not executed if the algorithm HAMMING is applied. }\end{array}\right\}$

By pressing ESC it is possible to return to the fourth menu.
By pressing F10 it is possible to terminate the program.

Sixth menu

The sixth menu contains the following windows.

\#	Window Name	Function and Comments
1	Traits to select	To specify what kind of traits will be selected in the experiment "Equivalent traits". E-EQUIVALENT - ε-equivalent traits for the characteristic traits obtained in the variant will be selected. E-COVERING - ε-covering traits for the characteristic traits obtained in the variant will be selected. E-SUBORDINATING $-\varepsilon$-subordinating traits for the characteristic traits obtained in the variant will be selected. E-SUBORDINATING \& E-COVERING - both ε-covering and ε-subordinating traits for the characteristic traits obtained in the variant will be selected.
2	Value of E	To specify the value of the parameter ε.
3	k1 k1t k2 k2t	To specify the values of selection and contradiction thresholds for selection of the traits of the first class ($\mathrm{k} 1, \mathrm{k} 1 \mathrm{t}$) and the second class ($\mathrm{k} 2, \mathrm{k} 2 \mathrm{t}$) in the experiment.
4	Objects of 1st class	To specify the composition of the learning sample of the first class for the experiment. ALL - all objects of the first class will be included. WITH EXCLUSIONS - some objects of the first class may be excluded from the learning. The window can be opened by pressing $\mathbf{F} 2$ to indicate these objects.
5	Objects of 2nd class	To specify the composition of the learning sample of the second class for the experiment. ALL - all objects of the second class will be included. WITH EXCLUSIONS - some objects of the second class may be excluded from the learning. The window may be opened by pressing $\mathbf{F} 2$ to indicate these objects.
6	Components of vectors	To specify which components of vectors will be used in the experiment. ALL - all components of vectors will be used. WITH EXCLUSIONS - some components of vectors will not be used. The window may be opened by pressing $\mathbf{F 2}$ to indicate these components.

By pressing ESC it is possible to return to the fifth menu.
By pressing F10 it is possible to terminate the program.

3.5 Example of Printout

```
            vectors of class 1(D0)
llall
    vectors of class 2(NO)
1.
    vectors of class 3(X)
\begin{tabular}{lrll|ll|} 
1. & M4 & 0 & 0 & 0 & 1 \\
2. & M6 & 1 & 1 & 1 & 0 \\
3. & M11 & 0 & 1 & 1 & 0 \\
4. & M12 & 0 & 1 & 1 & 0 \\
5. & M13 & 0 & 0 & 1 & 0 \\
control : & 1 & 3 & 4 & 1
\end{tabular}
    1 variant
Algorithm: CORA-3
Data from file: test.rat
k1=2, k1t=1, k2=2, k2t=1
Objects of 1 class which do not take part in learning:
Objects of 2 class which do not take part in learning:
Numbers of components which are not used:
Mode of work: learning
Delta=0
Conditions of variant have been written in profile: test.kat
```



```
13
\(\begin{array}{llll}1 & 1 & 1 & 1\end{array}\)
```

```
2 ~ c h a r a c t e r i s t i c ~ t r a i t s ~ o f ~ c l a s s ~ 1 ~ ( D - t r a i t s ) ~
```

2 ~ c h a r a c t e r i s t i c ~ t r a i t s ~ o f ~ c l a s s ~ 1 ~ (D - t r a i t s) ~

1. 7; 4, 4, 4 3: 1
2. 1; 1, 1, 2 2: 0
$0 \quad 1$
$1 \mid$
```

2 characteristic traits of class 2 (N-traits)
```

1. 0; 2, 2, 2 1: 2 0
2. 6; 1, 1, 4 1: 2 1
0| 0
Lattices of traits (objects from learning set which have a trait
are marked by 1)
2 \mp@code { c h a r a c t e r i s t i c ~ t r a i t s ~ o f ~ c l a s s ~ 1 ~ (D - t r a i t s) }

		11111	11111
1. 7; 4, 4, 4	3: 1	-1-11	1
2. 1; 1, 1, 2		-11--	

2 \mp@code { c h a r a c t e r i s t i c ~ t r a i t s ~ o f ~ c l a s s ~ 2 ~ (N - t r a i t s) }
1. 0; 2, 2, 2 1: 2 lllll
number
of votes number of votes for 1 class
for 2 class

```

```

 delta: -5 -4 -3 -2 -1 0
 numbers of objects in class D: 15 15 15 15 15 8 6 1 0 0 0 0

```
2 variant
Algorithm: HAMMING
Data from file: test.rat
Objects of 1 class which do not take part in learning:
Objects of 2 class which do not take part in learning:
Numbers of components which are not used:
Weights of components which are used:
    \(1.0,1.0,1.0,1.0\)
Mode of work: learning, \(t-e\) of functions
Delta= 2.00

Conditions of variant have been written in profile: test.hat
\begin{tabular}{|c|c|c|c|c|}
\hline names of functions & \multicolumn{2}{|r|}{f} & \multicolumn{2}{|r|}{9} \\
\hline number of comp. & 1 & 2 & 3 & 4 \\
\hline \% of 1 in 1 cl . & 43 & 71 & 43 & 57 \\
\hline \% of 1 in 2 cl . & 57 & 57 & 71 & 29 \\
\hline kernel & 0 & 1 & 0 & 1 \\
\hline weights of comp. & 1.0 & 1.0 & 1.0 & . 0 \\
\hline
\end{tabular}

2 variant (1 subvariant)


2 variant (2 subvariant)

\[
\begin{array}{ccccc}
\text { variant } & 1 & 2 & 2-1 & 2-2 \\
\text { k1:k2 } & 2: 2 & -:- & -:- & -:- \\
\text { k1t:k2t } & 1: 1 & -:- & - & - \\
\text { p1:p2 } & 2: & 2 & 2.00 ; & 1.00 ; \\
\text { del.;nDc } & 0 ; & 8 & 8 & 5
\end{array}
\]
\[
\text { voting for vectors of class } 1(\mathrm{D} 0)
\]
\begin{tabular}{lllllll} 
1. & M1 & \(0:\) & 1 & 3.00 & 2.00 & \(1.00+\) \\
2. & M2 & \(2:\) & \(0+\) & \(0.00+\) & \(0.00+\) & \(0.00+\) \\
3. & M7 & \(1:\) & \(0+\) & \(2.00+\) & 2.00 & \(0.00+\) \\
4. & M8 & \(1:\) & \(1+\) & \(1.00+\) & \(0.00+\) & \(1.00+\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 5. & M10 & & : 0+ & \(1.00+\) & \(0.00+\) & \(1.00+\) \\
\hline \multicolumn{2}{|r|}{voting} & for & vect & S of & class 2 & \(0)\) \\
\hline 1 & M3 & & : 1 & 3.00 & 2.00 & \(1.00+\) \\
\hline 2 & M5 & & : 1 & 3.00 & 2.00 & \(1.00+\) \\
\hline 3 & M9 & & : 1 & 3.00 & 2.00 & \(1.00+\) \\
\hline 4 & M1 4 & & 0: 1 & 3.00 & 2.00 & \(1.00+\) \\
\hline 5 & M15 & & : \(0+\) & \(1.00+\) & \(0.00+\) & \(1.00+\) \\
\hline \multicolumn{3}{|r|}{voting for} & \multicolumn{4}{|l|}{vectors of class 3 (X)} \\
\hline 1 & M4 & & 1+ & \(1.00+\) & \(0.00+\) & \(1.00+\) \\
\hline 2 & M6 & & : 1 & 3.00 & 2.00 & \(1.00+\) \\
\hline 3. & M11 & & 1: 0+ & \(2.00+\) & 2.00 & \(0.00+\) \\
\hline 4 & M12 & & 1: 0+ & \(2.00+\) & 2.00 & \(0.00+\) \\
\hline 5. & M13 & & : 1 & 3.00 & 2.00 & \(1.00+\) \\
\hline
\end{tabular}

\subsection*{3.6 Comments to the Example of Printout}

The printout contains the following:
- The coding of the objects.
- The conditions of the first variant (protocol); the algorithm used is CORA-3.
- The images of the traits of the first and the second classes. For each trait the following information is printed in one line:
\(\checkmark\) the number of the trait;
\(\checkmark\) number \(4 \delta_{1}+2 \delta_{2}+\delta_{3}\), where \(\delta_{1}, \delta_{2}\), and \(\delta_{3}\) are the values of three components of vectors, which form the trait;
\(\checkmark\) the numbers of the components, which form the trait;
\(\checkmark\) the number of objects from the first class, which have the trait;
\(\checkmark\) after ":" number of objects from the second class, which have the trait;
\(\checkmark\) "image" of the trait.
- The lattices of the traits. The beginning of the line, which corresponds to each trait is the same as in the case of the images of the traits. For each trait in the corresponding line the following information is also printed:
\(\checkmark\) "lattice" of the trait for the objects from the first class (the \(i\)-th element of the lattice is " 1 ", if the \(i\)-th object of the first class has the trait, otherwise it is "-");
\(\checkmark\) "lattice" of the trait for the objects from the second class.
Above the lattices for objects of the first class one line is printed: the \(i\)-th element of this line is " 1 ", if the \(i\)-th object of the first class takes part in the learning, otherwise it is " 0 ". Above the lattices for the objects of the second class the similar line is also printed; it shows what objects of the second class take part in the learning.
- The 2-dimensional table of voting for the variant. The names of the objects from the first class are marked by ' + ' and the objects of the second class - by "-".
- The conditions of the second variant (protocol); the algorithm used is HAMMING; the experiment T-E of functions is made.
- The kernels for the first variant and for the subvariants of the T-E of functions. The values of \(\alpha_{1}(i) \cdot 100 \%, \alpha_{2}(i) \cdot 100 \%\) and weights are printed with the kernels.
- The results of voting. In the title the number of the variant and the number of the subvariant (if an experiment is made) are printed. If the algorithm CORA-3 is applied then the values of thresholds for trait selection in this variant, numbers of the traits selected for the first ( \(\mathbf{p 1}\) ) and the second ( \(\mathbf{p 2}\) ) class, the value of the threshold \(\Delta\) (del.) and
the number ( \(\mathbf{n D c}\) ) of objects, which are classified as the objects of the first class are also printed in the title for each variant. If the algorithm HAMMING is applied then the value of \(\Delta\) and the number nDc are printed in the last two lines of the title of the variant or the subvariant. If the algorithm CORA-3 is applied then two columns are printed under the title: in the left column there are numbers of the traits of the first class, which the objects have; in the right column - numbers of the traits of the second class, which the objects have. If the algorithm HAMMING is applied then the Hamming's distances from the corresponding kernels to objects are printed under the title. If the object is classified as the object of the first class the results of voting or the value of the Hamming's distance are marked by " + ". If some objects from the first or from the second classes do not take part in the learning in the variant or the subvariant then the results of voting or the values of the Hamming's distance for them are marked by "*".

\section*{REFERENCES}

Gelfand,I.M., Sh.A.Guberman, V.I.Keilis-Borok, L.Knopoff, F.Press, I.Ya.Ranzman, I.M.Rotwain, and A.M.Sadovsky. 1976. Pattern recognition applied to earthquake epicenters in California. Phys. Earth Planet. Inter., 11: 227-283.
Gvishiani,A.D., and V.G.Kosobokov. 1981. On foundations of the pattern recognition results applied to earthquake-prone areas. Proceedings of Ac. Sci. USSR. Physics of the Earth, 2: 21-36 (in Russian).
Keilis-Borok,V.I. and A.J.Lichtman. 1981. Pattern recognition applied to presidential elections in the United States, 1860-1980: role of integral social, economic and political traits. Proceedings of US National Ac. Sci., 78, 11: 7230-7234.
Keilis-Borok,V.I. and I.M.Rotwain. 1990. Diagnosis of Time of Increased Probability of strong earthquakes in different regions of the world: algorithm CN. Phys. Earth Planet. Inter., 61: 57-72.
Sadovsky,M.A. (ed.), 1986. Long-term Earthquake Prediction. Moscow, IFZ AN SSSR MSSSS (in Russian). English translation: Algorithms of Long-term Earthquakes' Prediction. CERESIS, Lima, Peru, 1986.```

