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The use of nanoparticles in

Imaging and Sensing

= Optically bright for detection
= Surface functionalization for biocompatibility
= External field control for maneuver

= Fluorescence microscopy —
relies on fluorescence quantum efficiency
» Nonlinear optical microscopy —

need to understand nonlinear light scattering
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Nonlinear light scattering from

nanoparticles

= 2" order nonlinear light scattering
second harmonic generation (SHG)

P=coy'E+ 7*EE +..)

L > 20 >z~ =2"" order susceptibility

(sum frequency generation (SFG))

Symmetry dependent — for matters with inversion

symmetry, no SHG - and therefore SU rface sensitive
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FIRST THEORETICAL TREATMENT OF
Nonlinear Light Scattering
from AN INTERFACE, 1962

FHYSICAL REVIEW VOLUME 120, NUMBER 1 GETORER 1§, 042

Light Waves at the Boundary of Nonlinear Media
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Detection of Molecular Monolayers by
Optical Second Harmonic Generation

Yuen Ron Shen and coworkers,
PRL 46, 1010 (1981)
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Nonlinear Optical Probe of Molecules on Surfaces and Interfaces
H. L. Dal, University of Pennsylvania ~1988
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Monitoring isothermal water adsorption / desorption on

Ad(111) through surface generated SHG

5 Molecule-Surface bonding
£ reduces -
y Surface polarizability
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Phenomenological model of
second-order susceptibility:

Desorption energy increases with coverage:

First order ODE:
d@(z‘) - C O(1)ex p( aé?(ty )

where: [SEA exp / T ‘an

Cx 1 (1-0(n))




SHG from nanoparticles

. SHG from molecules adsorbed on surface
of micron size polystyrene particles

. Effect of particle size on SHG from
colloidal particles

. SHG from molecules adsorbed on surface
of nanometer size polystyrene particles

. SHG from metallic nanoparticles



Second Harmonic Generation:
Symmetry Sensitive Structural Probe
of molecular ensemble

® 20

Benzene NO SHG Pyridine SHG! f) _ EO(Q(IE n fzgﬁ n )
Hyperpolarizability is a vector

| g I v* =2"" order susceptibility
J

At a surface, molecules Colloidal particle surface, SHG!

orient in same direction
ol SHG!

7
<3 L , .
NO SHG

From ensemble of randomly
oriented molecules




Second Harmonic Generation
from molecules adsorbed on polystyrene particles

HF Wang, Langmuir 2000
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Eisenthal and coworkers, 1996: SHG from MG on polystyrene particles
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AG=-12.4 +0.2kcal/mol AG=-12.3£0.1kcal/mol
N, . =0.9+0.1*10°dye/PSS N_.=0.73+0.29*10°VGP/PSS

VGP MW 8500, 480 A2 = 10 out 100 methacrylate units adsorb on surface
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Prototypical Dye Sensitized Solar Cell (DSSC)

Connter-clectrode

zlass

condnctive oxide

W sensitizer

conductive oxide

zlass

photo-clectrode \

dye + hv — dye*
dye* — dye™ + ¢
2¢+ 31,y — 3I
3" — I+ 2¢
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Dye absorption spectra
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SHG probe of dye adsorption on TiO2 particles in different solvents
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Model for MG/PL Adsorption on PS

(peptides on biochips)
H. Eckenrode, Langmuir 2004

[DPL—surf]
+ + --++++ ++ ’ [DSUI’f]
| + + ++'o++++&+’+++'m ' en
S 2 Q 2 S
/O/e/ KD “e\c\
D+ SS - - D-SS
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1= B+ (oG5 + o OB |
_(KDthax _KPLLN£§f+ KD [D]+KPLL [PLL])+
0 _ ((KDthax _KPLLN£§f+ KD [D]+KPLL [PLL])Z +4KD [D](KPLLNIIrZé)I: _KDthax ))yz

D—=Surf — 2(KPLLN£§)I: _KDthax)
HD—PL—Surf x QPL—SWf =1- QD‘S”’”f



Peptide adsorption on biochips:
Effect of Charge Repulsion

E=V__+V_—AV

solv

V,.,=150 kcal/mol



Probing formation of vesicle: DiA

Self Assembly




Salt Effect on emulsion formation
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Q1. SHG from nanoparticle surface?

Particle size d << wavelength 800 nm!




Q1: How small is small?
Q2: SHG from surface of spherical,
(metallic) nanoparticle?

20 nm diameter
SHG?

&

Benzene
No SHG




Particle size etfect in SHG from particle surface

Polystyrene- Sulfate (SO; )Particle size (diameter):
0.2,0.53,0.81,0.99, 1.4, 2.0, 2.4, 3.0 um; SHG detected at forward scattering direction
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The molecules at the edge of the cross section
perpendicular to the beam propagation are
responsible for the forward direction detection

i

fundamental 2nd harmonic



Size Effect of SHG from Colloidal Particles

Phase matching at larger scattering angle with decreasing

particle size
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SHG angular distribution in the laboratory frame

k. :fundamental and SH wave vector

@y ? 2w

q : scattering vector

0. : scattering angle

S




Nonlinear Rayleigh-Gans-Debye (NLRGD) Theory

Fi(0)x® [+ F(0)x), +
QF,0,)-F, @ Dr

P o O

(2) (2) (2)
a L’)(H I IR |l

s (p)-polarization: polarization vertical

(parallel) to scattering plane (optical table)




Malachite Green/Polystyrene in Water

Nonlinear RGD model calculation of angular dependence of SHG scattering

Measurementson 55 and 85 nm also reported in Shan et al. Phys. Rev. A 73, 023819 (2006)




Angle dependence of SHG from colloidal particles

Probe particles of different sizes at selected scattering angles

Polystyrene particles
(diameter from 50 nm
To 1 micron)

The smaller the particle,
the larger the SHG
scattering angle.

Fundamental light
Propagation direction




Probe adsorption on nanoparticles through
Second Harmonic Scattering
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SH Jen, JPCB Lett 2006



Can we detect SHG from
the surface of
metallic nanoparticles?

(SHG from flat metal surface
can be detected.)



Enormous Hyper-Rayleigh Scattering from Nanocrystalline Gold Particle
Suspensions

Fredrick W. Vance, Buford I. Lemon, and Joseph T. Hupp*

Department of Chemistry and Materials Research Center, Northwestern University,
Evanston, lllinois 60208

J. Phys. Chem. B 1998, 102, 10091-10093

The recent emergence of advanced technological applications for colloidal gold
suspensions and related particle assemblies and interfaces has created a demand
for new chemical and physical techniques with which to characterize them. For
macroscopic samples/interfaces, coherent second harmonic generation
(SHG) has proven itself a useful characterization tool due, at least in part, to
metal-based plasmon enhancement. In an effort to defeat or bypass the size
restrictions inherent to SHG, we have utilized a related incoherent
methodology, hyper-Rayleigh scattering (HRS), to interrogate aqueous
colloidal suspensions of 13 nm diameter gold particles. The nanoscale particles
have proven to be remarkably efficient scatterers; when evaluated in terms of the
first hyperpolarizability (&), HRS signals from the gold particles substantially surpass
those observable from the best available molecular chromophores. Moreover, the
present experiments indicate that a is highly sensitive to colloid aggregation and
Imply that HRS is an effective tool for the characterization of symmetry-reducing
perturbations of nanoscale interfaces.



Theoretical modeling for Metal/semiconductor particles???

Nonlinear Rayleigh-Gans-Debye (RGD) Theory

Conditions of applicability:
* particle refractive index ~ liquid refractive index
* smaller particles (in comparison with wavelength)

N.Yang, W.E. Angerer and A.G.Yodh PRL 87, 103902 (2001)
S.Roke, W. G. Roeterdink, J. E. G. J. Wijnhoven, A. V. Petukhov, A. W. Kleyn, and M. Bonn, PRL 91, 258302 (2003)
S.-H.Jen, Ph. D. Thesis, University of Pennsylvania 2006

PROBLEMs:

Not good for

Larger (micron) particles, and
Metal /Semi-Conductor particles

Solution: the more general Mie Scattering Theory



Nonlinear MIE Theory'?

"11.Dadap et al. JOSA B 21(2004), 1328
2 y.Pavlyukh et al. PRB 70(2004), 245434

Esc(2w)

Einc(a))

Fundamental light SHG from surface
In plane waves projected in plane waves

Nonlinear Surface Source:

isotropic symmetry with a mirror plane

perpendicular to the surface

|z
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Expression for the SH Scattered field for ANY particle size'

Grazia Gonella, PRB 2011 0
co 2 /_
1_'3'"(2@') = ( (ll- ﬂ!rﬁhre_ﬁlsole ’(le m)( (1 hi(K1r)Yiml + %%(f‘h;(fflr))f‘ X x:m))
.!—I Mgpun——2 :
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a' ® 1 a e‘iK1 i ' G. Gonella and H.-L. Dai (in preparation)
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SH Mie Scattering from A SINGLE PARTICLE

A (l,m) =

r=a

r=a

In the case of DILUTE REGIME: mean distance between particles is greater than the coherence

length so the scattering events simply add up.
In the HIGH-DENSITY REGIME: coherent interference among the particles becomes important.



3D view of SHG calculated by MIE theory for
Gold Nanoparticles (50 nm diameter)

SHG from metallic nanoparticles should be detected at large scattering angles

4

X

Z: propagation direction
xz: (horizontal) scattering plane



SHG from 80 nm diameter Ag particle

Wei Gan, i 1l 1
Vi 2t (citrate stabilized in water)
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Signal (counts/S)

SHG or Hyper-Rayleigh Scattering? (a moot guestion)
SHG - from surface and bulk?
Surface SHG decreases as thiol bonds to Ag surface

6000 —

4000 —

3000 —

2000 —

1000 —

SHG =B +|1+ A (1- Theta) exp(i * f)| "2
Theta=K*C /555 +K*C

= 58.965 76.08

=2143.8 7145
=6.9834e+05 ?1.44e+05
=3.1417 ?4.73e+04

X O

Surface SHG
Langmuir Model

Bulk SHG

[ [ [ [ [
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Wei Gan, JCP 2011



SHG
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Ln(ka)

Temperature dependence of
Thiol reactions at Ag particle surface

14.5

14.0 —

13.5 T

13.0 —

k = Aexp(~Ea/RT)

In(k,) =In(4A)— Ea/RT

Ea
=In(4)——x
y =1n(A) R

12.5—I

3.30

3.35

, , , Ea= 8.4 Kcal/mole

3.40 3.45 3.50x10"
(K

Thiol reactions at Ag particle surface are
activated processes!!!

Why??7?



Wei Gan, Ang Chem Int Ed 2011

Origin of the activation energy — transition state?

(Transition state)

/ \
eSS 8o

\

+ 2 H+(sol.)

I: Physical Adsorption
II: Chemical Adsorption



Dramatic increase of Luminescence efficiency

of metallic nanoparticles
through surface modification

= While thiol adsorption onto particle surface
reduces the surface polarizability and thus
reduces SHG, it dramatically increases the
luminescence [see publications soon]
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Premises: Surface defects quenches luminescence, and
S-Ag bonding anneals surface defects 4 CB e

4 Trapping state
*D ’ ) = hv
Trap - TPL VB

Surface defect Thiol adsorption eliminates
traps local excitation  surface defect

Quenching cross section

Surface defect

REF: 1:Jiang ZJ, Leppert V, Kelley D F, J. phys. Chem. C 2009, 113, 19161 41
2: Fu H X, Zunger A, Phys. Rev. B 1997, 56, 1496



Nonlinear light scattering from

Biological cells

= SHG can be generated from molecules
adsorbed at the membrane of biological cells

= and be used to probe

= membrane-molecule interactions
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Molecular Adsorption and Transport at

Cell Membrane
by Second Harmonic Generation (SHG)
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Escherichia coli

Jia Zeng
Heather Eckenrode




Motivation:
-- Membrane Transport Studies of Hydrophobic Molecules

» Time-resolved Techniques

Simple Model Membrane Systems:

mAoRIAR
INRNPIR

Electrical relaxation studies Fluorescence stop-flow technique

Real Time Real Cell --SHG

» Intact Cells - Steady State Level

Beta-Lactam antibiotics transport through the bacterial outer membrane
by Enzyme Assay Method
W.Zimmermann, A. Rosselet Antimicrobial Agents and Chemotherapy, 368-372 (1977)
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O-Antigen
(2 repeats)

orange atoms: \
phosphorus in phosphate "‘.\
group which is '
negatively charged

N.A. Amro, et al., Langmuir 16: 2789-2796 (2000)




Kinetic Model Based on the Double Membrane Structure of £.co/r




d[Transp.1]=k, -(N,,—N,)-dt

55.5V. N ,(N, +dN,)

K — mid
1 (Nmid,sol + deid,sol )(Nli'onSt' - Nli — lei)
K 55.5V N ,(N,, +dN,,)
i (Nmid,sol + deid,sol )(N,;ZHSL - N20 — NZO)
Lo = C(Nlc:m —N,;+N,, - N2i)2
kﬂ : transport rate constant of OM

K, K, :adsorption equilibrium constants

55.5:

water molarity

Vmid . volume in between the two membranes
N I - adsorbed to the inner surface of the OM
N,,: adsorbed to the outer surface of the IM

N, . i s0l :dissolved in the periplasmic space

SH Intensity (arb.unit)

SN

w
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Table. Outer Membrane Characterizations

MG conc.

M 0.25 0.50 1.00 2.00 3.00

(6.0£0.2)x10-2

K(M™) | (8.0£0.8)x10* (8.0£0.5)x10% (8.0+0.6)x10% (7.8£0.2)x10* (8.0+1.0)x10°

Ny (cell™) | (4.1£0.3)x106  (7.1£0.2)x106  (1.2£0.1)x107 (1.6£0.2)x107 (2.240.1)x107
N2 (cell™) | (3.240.1)x105  (6.1£0.2)x106  (1.1£0.1)x107 (1.3£0.1)x107 (1.7£0.1)x107

lin

‘ 2 S 1.9x104s!
N S /N WZimmermann, A. Rosselet .
) ‘ O ) c ﬂ\ " Antimicrobial Agents and
(HaChN N(CHglz benzylpenicillin . Chemothempy, 1977

(5.4£1.6) x102 ¢!

Hydrophobic ion vs hydrophobic molecule




Relative Characterizations of OM and IM:

N,... (cell') N, (um2) -AG (kcal/mol) k, (s
EcoliOM | (7.4+1.2)X107  (1.2+0.2)X 107 13.64+0.4 (5.441.6) X 102
E.coli IM ~10%to ~107 ~10°to ~10° 5.11+0.7 (5.7£0.8) X103
Liposome | (2.8+02)X105  (1.940.1)X 10 8.6+0.2 9.5X 1072

ki;> K, simple diffusion + ion channel

-AGp < -AGyp<-AGgy 10nic strength effect




MEL Cell: precursor stage

O 7~12 pum in diameter
(100 ~500 um? )

O Spherical (NOT disc)

O NOT red yet

a gradual reduction 1n cell size (about ten times)

the progressive degeneration of the cell's nucleus which 1s
eventually extruded from the cell

the gradual loss of cytoplasmic organelles

the gradual appearance of haemoglobin and disappearance of
ribonucleic acid (RNA) in the cell

Stem celi Comm cell Developmental pathway -
Phase 1 Phase 2 Fhase 3
) Hibosome synthasis Hemaglobin accumulation Ejaction of nuclens
"‘JI'-_ "h--' {- ; T : --_d_
e 7 A N :: i
! 1 !
4 . ' — 7 — - — | ¥
(Cd | . ?
Early Late
Hemooyloblasi Proeryihroblast arythroblasi erythroblast -MNormoblast Reticulocyle Ervihrocyle

Copyrsafil & 3001 Bangamin Cummings, an impanl of Addizon Westay Langman, inc.



MEL Cell Membrane Structure: 3 Layers

L carbohydrates (10~15nm)
.
.

proteins

Oty il

UUUJL R g lipid bilayer (6nm)

— > red cell skeleton

ION CHANNELS in red blood cell (RBC) membrane

1. the well-known Ca’"-activated K* channel (Gardos channel)

high selectivity of K* over Na* if Ca?* at the intracellular face of the channel
2. anon-selective cation channel (NSC)

permeable to the divalent cations Ca?* and Ba**, and even Mg?*
3. anion channel in the RBC membrane
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Understanding Hofmeister Effect

Protein activity
Protein-Molecule interaction

|

Protein stability
Hydrophobic Electrostatic
Interaction Interaction

Phenomenological description-- Hofmeister Series

A particular ordering of 1ons in the ability to precipitate certain
proteins from an aqueous solution

Partial Listing:
F~~S8S0;” > HPO; > acetate>Cl” > NO; > Br~ > CIlO; >1~ > CIlO, > SCN~

NH} > K" > Na* > Li* > Mg*> > Ca™
< >
Salt Out (aggregate) Salt In (solubilize)







Nonlinear Light Scattering and Luminescence from

Nanoparticles and Biological Cells

Nonlinear light scattering (SHG) from the surface
of nanoparticles is detectable, and can be used
to probe the particle surface.

Luminescence particles from nanoparticles can be
much enhanced through surface modification.

SHG can be used to probe molecular interaction

and transport at cell membranes. o Colege of
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