

2268-19

Conference on Nanotechnology for Biological and Biomedical Applications (Nano-Bio-Med)

10 - 14 October 2011

From Bio- to Nano-Interfaces

Kislon VOITCHOVSKY Dept.of Materials Science & Eng. EPFL, STI-IMX-SUNMIL Batiment MXG, Station 12 1015 Lausanne SWITZERLAND

ICTP-KFAS NanoBioMed Conference, Trieste, 11 October 2011

(()4)

2

3

How are interfaces at the nanoscale? Does the coexistence of hydrophobic and hydrophilic nanoscale domains (e.g. on proteins) provide surfaces with special properties?

Energy cost: $\gamma_{MM} = \gamma_M + \gamma_M = 2\gamma_M$

4

Interfacial energy: $\gamma_{M1M2} = \gamma_{M1} + \gamma_{M2} - W_{M1M2}$

Thermodynamics at the interface: the work of adhesion

Interfacial energy γ_{SL} :

 $\gamma_{SL} = \gamma_S + \gamma_L - W_{SL}$ (Dupré equation)

interfacial energy ~ work of adhesion

Solid-liquid interfaces at the nanoscale

(PA

6

Probing the solid-liquid interface with AFM

A nanoscale tip mounted on a flexible cantilever is used to probe a sample locally

8

A vibrating tip \Rightarrow Amplitude A and phase ϕ

The tip vibration is damped by as the cantilever approaches the surface (here in liquid)

S u N M I L - Department of Materials Science and Engineering

A feedback loop keeps the cantilever vibration amplitude A constant

Detection: amplitude \boldsymbol{A} and phase $\boldsymbol{\varphi}$

The harmonic oscillator formalism

Flow of energy:
$$\overline{P}_{in} = \overline{P}_o + \overline{P}_{tip}$$

Equation of motion of the tip:

$$m\ddot{z} - \gamma_{TS}\dot{z} + (k_c + k_{TS})z = A_0k_c\cos(\omega t)$$

Solution of the type: $z(t) = A\cos(\omega t + \varphi)$

Linear damping Υ_{TS} Interaction stiffness k_{TS} Energy dissipation E_{TS}

B. Anczykowski et al. Applied Surface Science 140 (1999) 376-382

In AM-AFM, the amplitude is kept constant

 \rightarrow only the phase ϕ can vary freely

 \blacktriangleright the phase ϕ is directly related to the energy dissipation

Local energy dissipation by the tip ~ local phase contrast

No indication on the origin of the dissipation! (and hence on the origin of the local phase contrast)

A model bio-interface: *Purple membranes* from *H. salinarium in solution*

(14)

AM-AFM of purple membrane in liquid

Biophysical Journal (2006) 90, 2075-2085

Nano-indentation at different ionic concentrations show *leaflet-specific effects*

Ionic effects on the membrane/interface with KCl

5 nm bar

RMS extracell.: 0.15 nm / 0.15 nm / 0.15 nm / 0.13 nm RMS cytopl.: 0.15 nm / 0.25 nm / 0.25 nm / 0.26 nm

Nanoscale

Nanoscale (2010) 2, 222-29

Looking at specific ionic effects: Li+, K+ and Cs+

Purple Membrane cytoplasmic surface at 50mM salt concentration

50nm x 50nm

Voitchovsky et al. 2007

Modification of the membrane/interface with specific ions

Nanoscale (2010) 2, 222-29

⇒Importance of the protein surface structure in determining the membrane unique interfacial properties

- Alternation of hydrophobic/philic domains
- Specific ionic effects
- •Controlled local flexibility

S u N M I L - Department of Materials Science and Engineering

Striped nanoparticles can mimic the interface of proteins with the surrounding liquid

S u N M I L - Institute of Materials

Imaging Self Assembled Monolayers

Scanning Tunneling Microscopy

(PH

S u N M I L - Institute of Materials

STM Images of 'Striped' Nanoparticles

OT

HS

HS

Cartoon

Simulations

Microscopy Images

Stripe Formation in Mixed Monolayers

S u N M I L - Institute of Materials

How do these 'synthetic proteins' interact with biological cells?

Challenge of cellmembrane penetration

> Adapted from: Nature Reviews Drug Discovery (2005) **4** 581-593

Nano- particles	Ligand Shell Composition ^a	Core Size ⁶ (nm)	TGA⁵	ζ Potential ^d (mV)	Ligand shell morphology/ chemical structures					
MUS	100% MUS	4.3±1.3	15	-38±5.3	HS.	homogenous				
66-34 br- OT	67% MUS	4.3±1.2	13	-31.1± 0.73	HS.	unstructured				
66-34 OT	66% MUS	4.5±1.0	15	-33.1± 0.64	± HS MUS HS OT					
						TEM total diameter ^a before incubation (nm)	TEM total diameter ^a after incubation (nm)		DLS diameter before incubation (nm)	DLS diameter after incubation (nm)
				MUS		7.4±1.3	7.5±0.9		6.8±0.2	12.0±0.4
Protein Interactions				66-34 br-OT		7.4±1.2	7.4±	0.9	8.0±0.2	10.0±0.4
				66-34 OT		7.6±1.0	7.4±	0.8	7.2±0.2	7.8±0.2

(EPFL

Verma, Uzun, Irvine, Stellacci, Nature Mat. 2008

400 200

0

Cells only

MUS

66-34 br-OT 66-34 OT

Cell Membrane Penetration

4 °C Experiment

The absence of endocytosis has been independently confirmed via TEM studies

Endocytosis Inhibitors

Striped Nanoparticles

Lipid Bilayers

AFM images of supported bilayers and striped particles

S u N M I L - Institute of Materials

AFM study of Nanoparticles-bilayer interactions

Poster: Maria RICCI

(FPA)

Nanoparticle/Bilayer Interactions

(FP4)

Solubility of Rippled Nanoparticles

methanol 5.0E-08 4.5E-08 4.0E-08 5 3.5E-08 3.0E-08 2.5E-08 2.0E-08 5 1.5E-08 1.0E-08 5.0E-09 1.0E-12 25 33 50 67 75 86 100 0 14 % MPA conce 2.0E-08

with N. Marzari, MIT; **PNAS** 9886, 2008

Striped nanoparticles

What is so special about theses nanoparticles? Is it possible to quantify their interface with the surrounding?

ligand-coated nanoparticule

$$I.E. = \frac{1}{2}W_{11} + \frac{1}{2}W_{22} - W_{12} = \gamma_{S} + \gamma_{L} - W_{SL}$$

(fPL

$$W_{SL} = \gamma_{LV} (1 + \cos \theta_{CA}) \approx \\ \approx \gamma_L (1 + \cos \theta_{CA})$$

At the micron/nano scale

S u N M I L - Institute of Materials

Interfacial Energy Microscopy

Interfacial AM-AFM

S u N M I L - Institute of Materials

Voitchkovsky et al. Nature Nanotechnology 2010

Interfacial AM-AFM

phase $\phi \approx E_{cycl, ext}$

 \Rightarrow phase $\phi \approx local wetting$ (work of adhesion)

High Resolution Images

ligand-coated nanoparticule

Work of Adhesion Measurements

Structural Component in I.E.

From D. Chandler, Nature, 2005

Adding salt should decrease cavitation...

CA in water

AFM in water

SAM on Nanoparticles

48

•Atomic Force Microscopy can be used to locally probe and map solid-liquid interfaces

•At the nanoscale, interfacial properties (interfacial energy) strongly depend on structure.

•This becomes particularly important when the size of the different interaction sites (hydrophilic/phobic) becomes commensurate with that of the solvent molecules, as illustrated here with nanoparticles

•This is the norm in biology!

Acknowledgements

EPFL/MIT

Maria Ricci Dr. Jeffrey J. Kuna Randy Carney Prof. Francesco Stellacci

University of Oxford

Dr. Sonia A Contera Prof. John F Ryan

SISSA Trieste

Prof. Erio Tossati

Imperial College

Dr. Steve Mwenifumbo Prof. Molly Stevens

University of Michigan

Dr. Chetana Singh Prof. Sharon C. Glotzer

Funding

Swiss National Science Foundation Berrow Foundation Packard Foundation EPSRC