

2268-3

Conference on Nanotechnology for Biological and Biomedical Applications (Nano-Bio-Med)

10 - 14 October 2011

Local control of cell positioning and migration by multiscale substrate patterning

Francesco VALLE Institute for Nanostructured Materials CNR ISMN Bologna, Via P. Gobetti 101 I-40129 Bologna ITALY

Local control of cell positioning and migration by multiscale substrate patterning.

Francesco Valle

Consiglio Nazionale delle Ricerche (CNR) Istituto per lo Studio dei Materiali Nanostrutturati

> Joint ICTP-KFAS Conference on Nanotechnology for Biological and Biomedical Applications (Nano-Bio-Med)

> > 10 - 14 October 2011 Miramare - Trieste, Italy

The Abdus Salam International Centre for Theoretical Physics

<u>Controlling</u> cell adhesion is crucial in regenerative medicine

Sensing cell adhesion is also crucial in regenerative medicine

Flexible devices able to sense and to guide cell fate. Aiming to be implantable

Prof. John Rogers, University of Illinois

Institute for the Study of Nanostructured Materials

A

Implantable Organic Nano-Electronics I-ONE

Fabricate an <u>active multifunctional implantable</u> organic devices as transducers and sensors on <u>flexible</u> substrates made of <u>biocompatible</u> **polymers** targeted to <u>Spinal Cord Injury</u> repair

<u>Supply a combination of</u> <u>topo-electro-chemical stimuli</u> <u>to the injured nerve region</u> resembling the complex microenvironment required for stem cell commitment.

Consiglio Nazionale delle Ricerche

Nature is widely using multiscale fabrication

Mechanical resistance

Surface Forces

High efficiency motility

hosp lipid

Controlling the fate...let's start by controlling the positioning

MOLECULAR NANOTECHNOLOGY FOR LIFE SCIENCE APPLICATIONS: QUANTITATIVE INTERACTOMICS FOR DIAGNOSTICS, PROTEOMICS AND QUANTITATIVE ... we have to provide instructions to the cells:

Fabricated patterns of signals

... we have to provide instructions to the cells:

Uncontrolled signals

Random layer of cues

Signals properly designed

position

Which are the words:

Surface interactions influence cell fate

Surface property	Topography	Mechanics	Chemistry
Signals provided	Surface morphology, roughness	Stiffness, elasticity	Adhesion proteins and Growth factors
Fabrication strategy	Micro- and Nano-textured surfaces	Locally controlled Young's modulus	Soft lithography
	M. Bianchi et al 2010		F. Valle et al Adv. Biomater. 2010

...and so does electric field: Neuronal cell adhesion on SWCNT patterns

Smooth gradients

Soft-lithography to pattern proteins and chemical and topographic stimuli

MIMIC: Micro Molding in Capillaries

Patterning of Laminin on Tissue Culture Dish by MIMIC

Roughness=6.9 nm

Univ. of Prince Edward Island

22 variabile channels from 17-70 μm

Optical micrograph of Laminin pattern on TC dish

Laminin pattern visualized by anti-laminin immuno-fluorescence

Detail of Laminin Microstructure by Atomic Force Microscopy (AFM)

Cell number controlled by stripe width

Signal gradients to guide cell positioning

Pixel: 216

onteggio: 216

Percentile: 100,0

Media: 158.0

Du std: 24.9

Mediana 100.0

Signal gradients to guide cell positioning

Order Parameter

High local contrast of adhesion propensity

Patterning of Laminin on Teflon-AF by combined LCW-MIMIC

TEFLON-AFPoly[4,5-difluoro-2.2-bis (trifluoromethyl)-1,3dioxole-cotetrafluorethylene]

Roughness= 2.5 nm

In Regenerative Medicine:

- biocompatible
- chemically inert
- antifouling
- employed as safety material for medical tools and instruments

In Biosensing:

- good second dielectric

F. Valle, B. Chelli et al .Adv Biomaterials 2010

Control of the stripe length and density in addition to the lateral size

Controlling the hydrophobicity ratio Hr_i between the stamp and the surface one obtain longer and more dense pattern

 $Hr_1 < Hr_2 < Hr_3 < Hr_4 = 1$

The presence of neighboring anti-fouling and adhesion promoting regions is crucial for increasing the stringency

Patterning adhesive molecules as a strategy for reaching a controlled adhesion on teflon substrates

24h – 48 h after seeding

Tuning the cell adhesion by hydrophobicity controlled patterning

 $Hr_1 < Hr_3 < Hr_4 = 1$

Neural Cells Grown on Laminin pre-patterned TEFLON-AF

After 24h under standard cell incubation conditions

Teflon-AF

Laminin]

Oxygen plasma

treatment

PDMS

Optical micrograph

Fluorescence micrograph

1321N1 Astrocytoma cells

SHSY5Y Neuroblastoma cells

Differentiated Neurons on Laminin pre-patterned TEFLON-AF

From Stem cells...

Neural NE4C stem cells after 3h incubation.

From Neuroblastoma Cells...

SHSY5Y neuroblastoma cells after 5 days Retinoic Acid (RA).treatment

RA

Positioning → **migration**

Following the trajectories of the cells migrating in the presence of patterned signals

neighboring stripes. The antifouling behavior of Teflon prevents this phenomenon.

Accurate cell guidance achieved by local control of the

adhesion contrast

It is not only important what we design but also how the local environment is altering the scaffold

Confinement affects the cell speed

X-axis: variance of the displacements distribution <u>othogonal</u> to the pattern Y-axis: RMS speed <u>along</u> the lanes

Fast moving cells are not observed on wider lanes

other cells) but we were not able to exactly measure lane width.

Novel strategies: designing and employing new carriers

Novel molecules for carrying the most suitable cues

Design of novel targeted ACyD for targeting cancer cells

Galactose: i.e. HepG2-cell lines Mannose: i.e. sinusoidal endothelial cells, Kupferr cells Folate: i.e. KB cells, MCF7 cells Anisamide: Prostate cancer cells
Characterization of the deposited gradient by AFM imaging

In the case of a simple gradient, i.e. a decreasing concentration of a single species, AFM topography imaging will monitor the local amount of material

In the case of a complex gradient, i.e. a crossing decreasing concentration of two species, <u>functional AFM imaging (phase, force</u> spectroscopy, Trec) will monitor the local composition

Preliminary results illustrating:

- 1) how SEM can also be a suitable technique for characterizing the pattern
- 2) how cells (glia) arranges on our very preliminary patterns

Collab. Dr. Mazzaglia ISMN Messina

Topographic signals

Important when dealing with hard tissue or with sensing devices

Cell guided adhesion: TiO₂ stripes with controlled porosity

Topography and morphology

Coupling cells with organic semiconductor devices

Scaffolds coupled with sensing devices

Neural Cells Adhesion & Proliferation on Pentacene Thin Films

Optimum morphology for cell deployment is for $\sigma \le 6$ nm, $\xi > 500$ nm, df > 2.45.

I. Tonazzini et al. 2010, Biophysical Journal

Ultra-thin film OFET transducer

Stem cells to neural networks

E. Bystrenova et al. ADVANCED FUNCTIONAL MATERIALS (2008)

Signals from differentiated stem cells

 $(\text{I-I}_{\text{trend}})(\mu A)$

E. Bystrenova et al. (2011)

Topography and Chemistry together... Lithographically Controlled Etching (LCE)

fluorhydric acid (HF) aqueous solution etches a silicon oxide surface

Daniel Limones Poster # 22

Fine tuning the fabrication parameters

Different stamps \rightarrow different areas of the recesses \rightarrow different solution confinement

Controlling the engraved regions

THERMAL SIOX SUBSTRATE PATTERNED BY PDMS-CD STAMP

Highly controlled fabrication method

•

SiOx Nanowires fabrication: pattern obtained by Diffractive grating replica

220 nm

75 nm

One-step engraving and functionalizing a surface

