## Isotopes in geothermal prospecting: introduction

Angelo Minissale minissa@igg.cnr.it CNR-Italian Council for Research IGG-Inst. of Geosciences & Earth Resources Z/N≈1

### Neutrons defect

### Neutrons excess



Some elements have both stable and radiogenic isotopes

i.e. for carbon:<sup>12</sup>C, <sup>13</sup>C, <sup>14</sup>C (unstable)

The elements involved in chemical reactions and/or physical processes "fractionate" isotopes.

e.g., in water boiling, <sup>18</sup>O will tend to stay in the liquid, <sup>16</sup>O will tend to move in the steam

# The most used isotopic ratios in geothermics are:

 $^{18}O/^{16}O$  and  $^{2}H/H$  (for the origin of waters)

<sup>3</sup>H/H (for the age of geothermal fluids)

 $^{13}C/^{12}C$  in CO<sub>2</sub> (for the origin of CO<sub>2</sub> and travertine)

 $^{13}C/^{12}C$  in CH<sub>4</sub> (for the origin of CH4 and geothermometry)

<sup>3</sup>He/<sup>4</sup>He (for the very deep origin of the gas phase)

 $^{15}N/^{14}N$  (for the origin of nitrogen)

 $^{35}S/^{34}S$  in H<sub>2</sub>S, SO<sub>4</sub> (for the origin of sulfur)



#### The fractionation factor is strongly dependent upon temperature

fractionation factor for evaporation

#### $\delta^{18}$ O in primary rocks, altered rocks and geothermal fluids (age of the system)



GMWL affected by 1) Altitude, 2) Latitude and 3) continental EFFECTS



# $\delta^{18}$ O and $\delta^{2}$ H in central Italy



springs and geothermal fluids in central Italy







### Geological map of Rajastan & Gujarat





# Mixing trends in Rajastan and Gujarat (India) springs



### springs and CO<sub>2</sub> vents In the Carpathian Range



water isotopes in the Carpathian Range (Romania)



Tianjin geothermal area (150 km W of Beijing on the Pacific coast)



well waters (50-100 °C) from the Tianjin geothermal field (150 km E of Bejing)

#### General remarks on isotope geothermometry

CO<sub>2</sub>, CH<sub>4</sub>, H<sub>2</sub> and H<sub>2</sub>O are always present in a geothermal system

relative distribution of isotopes between components is a function of temperature

any pair of compounds may constitute an isotopic geothermometer if equilibrium is attained in the reservoir

$$\label{eq:2.1} \begin{split} ^{12}\mathrm{CO}_2 + ^{13}\mathrm{CH}_4 &= ^{13}\mathrm{CO}_2 + ^{12}\mathrm{CH}_4 \\ \mathrm{CH}_3\mathrm{D} + \mathrm{H}_2\mathrm{O} &= \mathrm{CH}_4 + \mathrm{HDO} \\ \mathrm{HD} + \mathrm{CH}_4 &= \mathrm{H}_2 + \mathrm{CH}_3\mathrm{D} \\ \mathrm{HD} + \mathrm{H}_2\mathrm{O} &= \mathrm{H}_2 + \mathrm{HDO} \\ \mathrm{C}^{16}\mathrm{O}_2 + \mathrm{H}_2^{18}\mathrm{O} &= \mathrm{C}^{16}\mathrm{O}^{18}\mathrm{O} + \mathrm{H}_2^{16}\mathrm{O} \\ \mathrm{S}^{16}\mathrm{O}_4^{2-} + \mathrm{H}_2^{18}\mathrm{O} &= \mathrm{S}^{16}\mathrm{O}_3^{18}\mathrm{O}^{2-} + \mathrm{H}_2^{16}\mathrm{O} \\ \\ \mathrm{S}^{32}\mathrm{SO}_4^{2-} + \mathrm{H}_2^{34}\mathrm{S} &= \mathrm{S}^{34}\mathrm{SO}_4^{2-} + \mathrm{H}_2^{32}\mathrm{S} \end{split}$$



### CO<sub>2</sub>-CH<sub>4</sub> isotopic geothermometer

 ${}^{13}\text{CH}_4 + {}^{12}\text{CO}_2 = {}^{13}\text{CO}_2 + {}^{12}\text{CH}_4$ 

 $T(^{\circ}C) = -173 + (15790 / (1000 \ln \alpha + 9))$ 

 $\alpha = \frac{\text{isotopic ratio in component 1}}{\text{isotopic ratio in component 2}}$ 





### Multiple sources of CO2



Multiple origin of CO<sub>2</sub> in central Italy having different isotopic signature (Minissale et al. 1997;2002).

Carbon isotopes and the origin of  $CO_2$ 

### cross section of central Italy









### The <sup>3</sup>He/<sup>4</sup>He (R) is a powerful tectonic tool

In air the <sup>3</sup>He/<sup>4</sup>He (Ra) is 1,39 \*<sup>10-6</sup>

The ratio (R/Ra) in the mantle > 35

Because f radioactivity of U and Th and formation of  $\alpha$  particles (<sup>4</sup>He) the ratio (R/Ra) in the crust can be as low as 0.0001

The <sup>3</sup>He/<sup>4</sup>He ratio can be used to trace the presence of mantle magmas and deep gases (San Andreas, Anatolian....faults)



Recent isotopic ratios (prevalently used for pollution)

e.g. <sup>15</sup>N/<sup>14</sup>N in NO<sub>3</sub> for biological pollution <sup>15</sup>N/<sup>14</sup>N in NH<sub>2</sub> (ammine) after explosions <sup>35</sup>Cl/<sup>37</sup>Cl isotopes in perclorates for pollution <sup>11</sup>B/<sup>10</sup>B isotopes for paleo *p*H of ocean <sup>129</sup>I/<sup>131</sup>I

etc.